Non-steroidal anti-inflammatory drugs (NSAIDs) are used extensively as therapeutic agents, despite their well-documented gastrointestinal (GI) toxicity. Presently, the mechanisms responsible for NSAID-associated GI damage are incompletely understood. In this study, we used Microarray analysis to generate a novel hypothesis about cellular mechanisms that underlie the GI toxicity of NSAIDs. Monolayers of intestinal epithelial
Drug-induced alterations to gene and protein expression in intestinal epithelial cell 6 cells suggest a role for calpains in the gastrointestinal toxicity of nonsteroidal anti-inflammatory agents.
Specimen part
View SamplesThe alveolar type 1 (AT1) cell covers >95% of the gas exchange surface and is extremely thin to facilitate passive gas diffusion. The development of this highly specialized cell is poorly understood including fundamental questions regarding cell number and morphology. Using new molecular stereology and single cell imaging methods, we show that AT1 cells develop via a non-proliferative two-step process while maintaining proliferative potential. In the flattening step, AT1 cells remodel cell junctions and undergo molecular specification. In the folding step, AT1 cells are sculptured to match secondary septa formation, resulting in a single AT1 cell spanning multiple alveoli. AT1 cells grow in size by >10-fold, fueling most of the postnatal lung growth. Strikingly AT1 cells proliferate upon ectopic SOX2 expression and undergo stage-dependent cell fate reprogramming. These results contradict the traditional view of AT1 cells being terminally differentiated and provide insights to alveolar maturation. In this experiment, we conducted next-generation sequencing on flow-sorter AT1 cells isolated from mouse lungs ectopically expressing Sox2 under the control of the AT1-specific promoter Scnn1a versus control AT1 cells. Overall design: Two samples of Sox2-expressing AT1 cells versus two control AT1 samples.
The development and plasticity of alveolar type 1 cells.
Cell line, Subject
View SamplesIn depth temporal profiling of transcript changes at 10 time points during germination in Arabidopsis seed was carried out. The time course utilised, encompassed seed maturation, stratification, germination and post-germination and provided a global investigation into the tightly regulated, phasic changes that define seed germination.
In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis.
Specimen part, Disease, Time
View SamplesIn response to bacterial infection, early transcriptional re-programming occurs in the host plant.
Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress.
Specimen part
View SamplesIn response to WRKY40 and WRKY60 perturbation (and high light stress), significant transcriptional re-programming occurs particularly for genes encoding stress responsive mitochondrial and choloplast proteins.
AtWRKY40 and AtWRKY63 modulate the expression of stress-responsive nuclear genes encoding mitochondrial and chloroplast proteins.
Specimen part, Treatment
View SamplesTranscript abundance profiles were examined over the first 24 hours of germination in rice grown under aerobic conditions.
Experimental analysis of the rice mitochondrial proteome, its biogenesis, and heterogeneity.
Specimen part, Time
View SamplesThe antagonistic interaction between iron (Fe) and phosphorus (P) has been noted in the area of plant nutrition. To understand the physiology and molecular mechanisms of this interaction, we studied the growth performance, nutrient concentration, and gene expression profiles of root and shoot segments derived from 10-d-old rice (Oryza sativa) seedlings under four different nutrient conditions: (1) full strength of Fe and P (+Fe+P); (2) full strength of P and no Fe (-Fe+P); (3) full strength of Fe and no P (+Fe-P); and (4) without both Fe and P (-Fe-P).
Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings.
Specimen part
View SamplesAnalysis of changes in global transcript abundance profiles of 2 week old tim23 OE (overexpressor) and tim23 KO (knock-out) mutant Arabidopsis plants complared to wild-type (Col-0) using Affymetrix GeneChipル Arabidopsis ATH1 Genome Arrays.
Dual location of the mitochondrial preprotein transporters B14.7 and Tim23-2 in complex I and the TIM17:23 complex in Arabidopsis links mitochondrial activity and biogenesis.
Age, Specimen part
View SamplesArabidopsis ABA hpersensitive germination2-1 mutant shows an enhanced sensitivity to ABA. This mutant has higher levels of endogenous ABA. This mutant also exhibited SA hypersensitivity and dwarf phenotype. Regarding SA hypersensitivity, ahg2-1 exhibits higher endogenous SA level and an enhanced resistance to pathogenic bacteria. Since AHG2 encodes the Arabidopsis polyA specific ribonuclease that is involved in mRNA degradation, presumably abnormal accumulation of some mRNAs confers the unique phenotype. Transcriptome analyses are expected to offer information on the target of AHG2. In order to eliminate secondary effects of higher levels of ABA and SA, ahg2-1abi1-1 and ahg2-1sid2-2 double mutants were also examined. The transcriptome data revealed that; ahg2-1 confers unique gene expression profiles, ABA and SA affect the expression profiles of this mutant but many genes are independent of those plant hormone responses. Comparing with expression profiles of other mutants indicated that the ahg2-1 might affect mitochondrial function.
ABA hypersensitive germination2-1 causes the activation of both abscisic acid and salicylic acid responses in Arabidopsis.
No sample metadata fields
View SamplesRNAseq profiling of 10 time points during germination in Arabidopsis, from freshly harvested seed, through mature seed, stratification, germination and to post-germination. Overall design: Total RNA was extracted from Arabidopsis seeds at 10 time points during germination in triplicate. The time points were: freshly harvested seed (H), seeds following 15 days of ripening (0 h), seeds after; 1 h of stratification (1 h S), 12 h of stratification (12 h S), 48 h of stratification (48 h S), followed by seed collected 1 hour into the light (1 h SL), 6 hours into the light (6 h SL), 12 hours into the light (12 h SL), 24 hours into the light (24 h SL) and 48 hours into the light (48 h SL).
Extensive transcriptomic and epigenomic remodelling occurs during Arabidopsis thaliana germination.
Specimen part, Subject, Time
View Samples