Purpose: Characterize functional alterations in stem cells and paneth cells obtained from young and aged mice, focusing on age-based impairment of intestinal regeneration due to a decline in canonical Wnt signaling. Methods: mRNA profiles of young and aged stem and paneth cells were generated in triplicate (with one additional young paneth sample) using the Illumina HiSeq 2500. Reads that passed quality filters were aligned to the mm10 mouse genome with annotations provided by UCSC. Results: Approximately 10 millions reads were aligned per sample, corresponding to 36186 transcripts -- of these, 19574 exhibited reasonable expression. The effect of age was tested wtihin paneth and stem cells, using unpaired t-tests with a p-value cutoff of 0.05 and fold change cutoff of 1.5. Within paneth cells, 1025 genes were significant; within stem cells, 750 genes exhibited differential regulation. Among the downregulated genes in paneth and stem cells, we observed significant enrichment of canonical Wnt signaling genes. Conclusion: Age-related downregulation of canonical Wnt signaling is involved in the impairment of intestinal regulation upon aging. Overall design: mRNA profiles of paneth and stem cells obtained from proximal intestinal crypts from aged and young male Lgr5 mice were generated using RNAsequencing in triplicate, using Illumina HiSeq 2500.
Canonical Wnt Signaling Ameliorates Aging of Intestinal Stem Cells.
Sex, Specimen part, Subject
View SamplesHematopoietic stem cells (HSCs) balance self-renewal and differentiation to maintain homeostasis. With aging, the frequency of polar HSCs decreases. Cell polarity in HSCs is controlled by the activity of the small RhoGTPase Cdc42. Here we demonstrate, using a comprehensive set of paired daughter cell analyses that include single cell 3D-confocal imaging, single cell transplants, single cell RNA-seq as well as single cell ATAC-seq, that the outcome of HSC divisions is strongly linked to the polarity status before mitosis, which is in turn determined by the level of the activity Cdc42 in stem cells. Aged apolar HSCs undergo preferentially self-renewing symmetric divisions, resulting in daughter stem cells with reduced regenerative capacity and lymphoid potential, while young polar HSCs undergo preferentially asymmetric divisions. Mathematical modeling in combination with experimental data implies a mechanistic role of the asymmetric sorting of Cdc42 in determining the potential of daughter cells via epigenetic mechanisms. Therefore, molecules that control HSC polarity might serve as modulators of the mode of stem cell division regulating the potential of daughter cells. Overall design: Sorted single cells were cultured with and without treatment in the presence of cytokines until first cell division (40-44hrs). The daughter cells were manually separated, washed with PBS and collected for RNA sequencing.
Aging alters the epigenetic asymmetry of HSC division.
Specimen part, Cell line, Treatment, Subject
View SamplesThe present study aimed to determine mRNA expression profilling of indirect immobilized Jagged1 treated human dental pulp cells. Human dental pulp cells were seeded on indirect immobilized Jagged1 surface for 24 h. Cells on hFc immobilized surface was employed as the control. RNA sequencing was performed using NextSeq500, Illumina. Data were processed on FastQC and FastQ Toolkit and subsequently mapped with Homo sapiens hg38 using TopHat2. Mapped data were processed through Cufflink2 and Cuffdiff2. Results demonstrated 1,465 differentially expressed genes in Jagged1 treated cells compared with the control. Enriched pathway analysis revealed that Jagged1 treated cells upregulated genes mainly involved in extracellular matrix organization, disease, and signal transduction categories. However, genes related to cell cycle, DNA replication and DNA repair categories were downregulated. In conclusion, Jagged1 activates Notch signaling and regulates cell cycle pathway in hDPs. Overall design: The mRNA profiles of human dental pulp cells treated with indirect immobilized Jagged1 (10nM) for 24 h was evaluated by next genereation RNA sequencing (NextSeq 500, Illumina) in triplicates. Cells on hFc immobilized surface was used as the control. In some condition, cells were pretreated with a gamma secretase inhibitor (DAPT; 20 uM) for 30 mins prior to Jagged1 exposure.
RNA sequencing data of Notch ligand treated human dental pulp cells.
Specimen part, Treatment, Subject
View SamplesOf 54,675 expressed sequence tags, microarray analysis revealed that 391 genes were differently expressed (>1.5-fold difference) between LA-PV junction and LAA, including genes related to arrhythmia, cell death, fibrosis, hypertrophy, and inflammation. Microarray and q-PCR produced parallel results in analyzing the expression of particular genes. The expression of paired like homeodomain-2 (PITX2) and its target protein (short stature homeobox-2 [SHOX2]) was greater in LA-PV junction than in LAA, which may contribute to arrhythmogenesis. Five genes related to thrombogenesis were up-regulated in LAA, which may implicate for the preferential thrombus formation in LAA. Genes related to fibrosis were highly expressed in LAA, which was reflected by intense ultrastructural changes in this region
Region-specific gene expression profiles in the left atria of patients with valvular atrial fibrillation.
Sex, Specimen part
View SamplesDuring senescence of detached rice leaves, tryptophan (Trp) and Trp-derived secondary metabolites such as serotonin and 4-coumaroylserotonin accumulated in concert with methanol (MeOH) production. This senescence-induced MeOH induction was closely associated with levels of pectin methylesterase (PME)1 mRNA and PME enzyme activity. Exogenous challenge of detached rice leaves with 1% MeOH accelerated Trp and serotonin biosynthesis with induction of the corresponding genes. No other solvents including ethanol resulted in a Trp-inducing effect. This MeOH-induced Trp synthesis was positively regulated by abscisic acid but negatively regulated by cytokinin, suggesting hormonal involvement on the action of MeOH. Endogenous overproduction or suppression of MeOH either by PME1 overexpression or RNAi gene silencing revealed that PME1 overexpressing lines produced twofold higher Trp levels with elevated Trp biosynthetic gene expression, whereas RNAi lines showed twofold reduction in Trp level in healthy control rice leaves, suggesting that MeOH acts as an endogenous elicitor to enhance Trp biosynthesis. Among many transcription factors induced following MeOH treatment, the WRKY family showed significant induction patterns of which WRKY14 appeared to play a key regulatory role in MeOH-induced Trp and Trp-derived secondary metabolite biosynthesis.
Methanol is an endogenous elicitor molecule for the synthesis of tryptophan and tryptophan-derived secondary metabolites upon senescence of detached rice leaves.
Specimen part
View SamplesRNA sequencing of human dermal fibroblasts from CAID patients passage 8 and passage 14 Overall design: RNA sequencing was perfomed on 3 wild type controls and 3 CAID patients fibroblast cell lines at cell passages 8 and 14. Sequencing was performed on Illumina Hiseq4000, 8 samples/lanes, paired-end.
Molecular Signature of CAID Syndrome: Noncanonical Roles of SGO1 in Regulation of TGF-β Signaling and Epigenomics.
Specimen part, Subject
View SamplesSSEA1+ c-kit+cells sorted from mouse embryonic stem cells differentiated for 4 days in 10uM Retinoic acid do not form teratomas when transplated into SCID mice while Pten-/- cells do.
Loss of Pten causes tumor initiation following differentiation of murine pluripotent stem cells due to failed repression of Nanog.
Specimen part
View SamplesAPC inactivation is the early process in the tumorigenesis of colorectal cancer. We established organoid cultures from intestines of genetically modifeid mice harboring Apcfl/fl, Tacc3wt/wt or Apcfl/fl, Tacc3fl/fll and R26CreERT2 allele
Suppression of intestinal tumors by targeting the mitotic spindle of intestinal stem cells.
Specimen part
View SamplesTranscription factor access to regulatory elements is prevented by the nucleosome. Heat shock factor 1 (HSF1) is a winged helix transcription factor that plays roles in control and stressed conditions by gaining access to target elements, but mechanisms of HSF1 access have not been well known in mammalian cells. We show a physical interaction between the wing motif of human HSF1 and replication protein A (RPA), which is involved in DNA metabolism. Depletion of RPA1 abolishes HSF1 access to the promoter of HSP70 in unstressed conditions, and delays its rapid activation in response to heat shock. The HSF1-RPA complex leads preloading of RNA polymerase II and opens chromatin structure by recruiting a histone chaperone FACT. Furthermore, this interaction is required for melanoma cell proliferation. These results provide a mechanistic basis for constitutive HSF1 access to nucleosomal DNA, which is important for both basal and inducible gene expression.
RPA assists HSF1 access to nucleosomal DNA by recruiting histone chaperone FACT.
Specimen part
View SamplesIn addition to transcriptional regulation, mRNA degradation critically contributes to gene expression as shown by various biological analysis. The CCR4-NOT complex serves as a major deadenylase that initiates mRNA degradation.
CNOT3 suppression promotes necroptosis by stabilizing mRNAs for cell death-inducing proteins.
Specimen part, Time
View Samples