MicroRNAs (miRNAs) have been implicated in regulating multiple processes during brain development in various species. However, the function of miRNAs in human brain development remains largely unexplored. Here, we provide a comprehensive analysis of miRNA expression of regionalized neural progenitor cells derived from human embryonic stem cells and human fetal brain. We found mir-92b-3p and mir-130b-5p to be specifically associated with neural progenitors and several miRNAs that display both age-specific and region-specific expression patterns. Among these miRNAs, we identified miR-10 to be specifically expressed in the human hindbrain and spinal cord, while absent from rostral regions. We found that miR-10 regulates a large number of genes enriched for functions including transcription, actin cytoskeleton and ephrin receptor signaling. When overexpressed, miR-10 influences caudalization of human neural progenitors cells. Together, these data confirms a role for miRNAs in establishing different human neural progenitor populations. This data set also provides a comprehensive resource for future studies investigating the functional role of different miRNAs in human brain development. Overall design: Human embryonic stem cells (hESCs) were transduced with lentiviral vectors expressing either miR10a-GFP or miR10b-GFP. The expression of the vectors is Tet-regulated and they will only be expressed in the presence of Doxycycline. In order to detect direct targets of the miR10a and miR10b, we differentiated the trasduced hESCs for 14 days, and added doxycycline to only half of the groups - resulting in groups that are overexpressing miR10a or miR10b and some groups that are not overexpressing these miRNAs.
Comprehensive analysis of microRNA expression in regionalized human neural progenitor cells reveals microRNA-10 as a caudalizing factor.
No sample metadata fields
View SamplesNIH-3T3 cells transduced with either EBF1-, PPARg2- or empty vector were stimulated with hormones to initiate adipocyte differentiation. RNA extraction was done using TriZol at d0, d2, d4 and d10 after stimulation. Samples were handled according to standard affymetrix protocols.
Gene expression analysis suggests that EBF-1 and PPARgamma2 induce adipogenesis of NIH-3T3 cells with similar efficiency and kinetics.
No sample metadata fields
View SamplesGenome-wide analysis of GBM-derived brain tumor stem cells-like (BTSCs) collected at the Freiburg Medical Center and UAB (JX6)
NF1 regulates mesenchymal glioblastoma plasticity and aggressiveness through the AP-1 transcription factor FOSL1.
Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Glioblastoma Cell Malignancy and Drug Sensitivity Are Affected by the Cell of Origin.
Specimen part
View SamplesThe cell of origin in glioblastoma is not formally proven but generally accepted to be a neural stem cell or glial precursor cell. In addition, there is also limited knowledge about the functional consequences of the cell of origin for glioblastoma development and response to therapy.
Glioblastoma Cell Malignancy and Drug Sensitivity Are Affected by the Cell of Origin.
Specimen part
View SamplesThe cell of origin in glioblastoma is not formally proven but generally accepted to be a neural stem cell or glial precursor cell. In addition, there is also limited knowledge about the functional consequences of the cell of origin for glioblastoma development and response to therapy.
Glioblastoma Cell Malignancy and Drug Sensitivity Are Affected by the Cell of Origin.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Epigenetic Regulation of ZBTB18 Promotes Glioblastoma Progression.
Cell line
View SamplesThe transcriptional repressor ZBTB18 was overexpressed in the brain tumor xenoline JX6 by lentiviral transduction. Three independent transduction were performed (biological replicates) and analyzed by gene expression aray. Gene set enrichemnt analysis (GSEA) showed changes in the expression of mesenchymal signature. A subset of genes was further valiadted by qPCR. These results indicate a role of ZBTB18 as repressor of mesenchymal genes in Glioblastoma.
Epigenetic Regulation of ZBTB18 Promotes Glioblastoma Progression.
Cell line
View SamplesThe transcriptional repressor ZBTB18 was overexpressed in the brain tumor stem cell-like BTSC233 by lentiviral transduction. Three independent transduction were performed (biological replicates) and analyzed by gene expression aray. Gene set enrichemnt analysis (GSEA) showed changes in the expression of mesenchymal signature. A subset of genes was further valiadted by qPCR. These results indicate a role of ZBTB18 as repressor of mesenchymal genes in Glioblastoma.
Epigenetic Regulation of ZBTB18 Promotes Glioblastoma Progression.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes.
Disease, Cell line
View Samples