Screening for genes regulated by Etv2 within Flk-1+/PDGFRa+ ES derived mesoderm.Microarray analysis performed to screen for the candidate genes regulated by Etv2. TT2 ES cells differentiated on OP9 feeder cells were sorted using Flk-1 and PDGFRa antibodies.Gene expressions from these two populations were compared.
Etv2/ER71 induces vascular mesoderm from Flk1+PDGFRα+ primitive mesoderm.
Cell line
View SamplesScreening for genes up in Etv2+ cells within Flk-1+ ES derived mesoderm
Etv2/ER71 induces vascular mesoderm from Flk1+PDGFRα+ primitive mesoderm.
Cell line
View SamplesWe investigated that gene expression profile of generated human iPS cells from cord blood cells using temperature sensitive sendai-virus vector.
Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors.
Specimen part
View SamplesBackground: Blau syndrome, or early-onset sarcoidosis, is a juvenile-onset systemic granulomatosis associated with a mutation in Nucleotide-binding oligomerization domain 2 (NOD2). The underlying mechanisms of Blau syndrome leading to autoinflammation are still unclear, and there is currently no effective specific treatment for Blau syndrome. Objectives: To elucidate the mechanisms of autoinflammation in Blau syndrome, we sought to clarify the relation between disease associated-mutant NOD2 and the inflammatory response in human samples. Methods: Blau syndrome-specific induced pluripotent stem cells (iPSCs) lines were established. To precisely evaluate the in vitro phenotype of iPSC-derived cells, the disease-associated NOD2 mutation of iPSCs was corrected using a CRISPR/Cas9 system. We also introduced the same NOD2 mutation into a control iPSC line. These isogenic iPSCs were then differentiated into monocytic cell lineages, and the status of NF-?B pathway and proinflammatory cytokine secretion were investigated. Results: We focused on the signals that upregulate the expression of NOD2, especially IFN-? signaling. IFN-? treatment of NOD2-mutant macrophages induced ligand-independent NF-?B activation and proinflammatory cytokine production. IFN-? treatment acted as a priming signal through the up-regulation of NOD2 protein and recruitment of NOD2 on the basement membrane. Conversely, the production of proinflammatory cytokines by MDP, a ligand of NOD2, was decreased in mutant macrophages. Conclusions: Our data support the significance of ligand-independent autoinflammation in the pathophysiology of Blau syndrome. Our comprehensive isogenic disease-specific iPSC panel provides a useful platform for probing therapeutic and diagnostic clues for the treatment of Blau syndrome patients. Overall design: RNA-sequencing was conducted to identify the genes expressed in reponse to stimulation in different manners between WT and MT cells
Pluripotent stem cell models of Blau syndrome reveal an IFN-γ-dependent inflammatory response in macrophages.
Specimen part, Disease, Disease stage, Subject
View SamplesDeregulated retinal angiogenesis directly cause vision loss in many ocular diseases, such as diabetic retinopathy and retinopathy of prematurity. To identify endothelial-specific genes expressed in angiogenic retinal vessels, we purified genetically labeled endothelial cells from Tie2-GFP transgenic mice and performed gene expression profiling using DNA microarray. To find out genes associated with angiogenesis, comparisons of microarray data were carried out between GFP-negative non-endothelial retinal cells and GFP-positive retinal endothelial cells in angiogenic P8 retina.
Sema3E-PlexinD1 signaling selectively suppresses disoriented angiogenesis in ischemic retinopathy in mice.
Specimen part
View SamplesFour conditions of cultured CD8+ T cells were analyzed with Affymetrix HG-U133-Plus-2.0 microarrays.
Detection of self-reactive CD8⁺ T cells with an anergic phenotype in healthy individuals.
Specimen part
View SamplesActivation of telomerase often endows cancer cells, but rarely normal somatic cells, with immortality. Especially, fetal lung fibroblasts are known to be hardly immortalized by TERT overexpression. We here established an immortal non-transformed lung fibroblast cell line only by TERT transfection, as well as an immortal transformed cell line by transfection of TERT and SV40 early antigens. Comparing the expression profiles of these cell lines with those of mortal cell strains with elongated lifespan after TERT transfection, 51 genes, including 19 upregulated and 32 downregulated, were explored to be the candidates responsible for regulation of cellular proliferation of lung fibroblasts. These included the genes previously reported to be involved in cellular proliferation, transformation, or self-renewal capacity, and those highly expressed in lung tissues obtained from patients with idiopathic pulmonary fibrosis or hypersensitivity pneumonitis. This set of lung fibrobrast cell lines/strains of identical genetic background with different proliferative capacity, mortal and immortal non-transformed fibroblasts may become useful model cells for research on lung fibroblast growth regulation and the candidate genes explored in this study may provide promising biomarkers or molecular targets of pulmonary fibrosis.
Exploration of the genes responsible for unlimited proliferation of immortalized lung fibroblasts.
No sample metadata fields
View SamplesIn our experiments with a xenograft model, mouse-IFN (mIFN) treatment was suggested to exaggerate the antitumor effects of sorafenib on hepatocellular carcinoma in vivo.
The in vivo antitumor effects of type I-interferon against hepatocellular carcinoma: the suppression of tumor cell growth and angiogenesis.
No sample metadata fields
View SamplesIdentification of the relationships of Kaposi sarcoma (KS), normal skin to various cell cultures. The effects of KS herpes virus, the infectious cause of KS, on infected endothelial cells are also investigated.
ARID3B induces malignant transformation of mouse embryonic fibroblasts and is strongly associated with malignant neuroblastoma.
Sex, Specimen part, Disease, Disease stage, Cell line, Subject
View SamplesIn the present study, we investigated the effect of CBM 588 on lifespan and multiple-stress resistance using Caenorhabditis elegans as a model animal. When adult C. elegans were fed a standard diet of Escherichia coli OP50 or CBM 588, the lifespan of the animals fed CBM 588 was significantly longer than that of animals fed OP50. Moreover, the worms fed CBM 588 were more resistant to certain stressors, including infections with pathogenic bacteria, UV irradiation, and the metal stressor Cu2+. CBM 588 failed to extend the lifespan of the daf-2/IR, daf-16/FOXO and skn-1/Nrf2 mutants. Transcriptional profiling comparing CBM 588-fed and control-fed animals suggested that DAF-16-dependent class II genes were regulated by CBM 588. In conclusion, CBM 588 extends the lifespan of C. elegans probably through regulation of the insulin/IGF-1 signaling (IIS) pathway and the Nrf2 transcription factor, and CBM 588 improves resistance to several stressors in C. elegans. Overall design: Transcriptional profiling of eight-day-old worms that were fed OP50 or CBM 588 for five days, by deep sequencing, using Illumina HiSeq.
<i>Clostridium butyricum</i> MIYAIRI 588 Increases the Lifespan and Multiple-Stress Resistance of <i>Caenorhabditis elegans</i>.
Sex, Cell line, Treatment, Subject
View Samples