Left ventricle myocytes from Dahl rats with a normal or failed heart was subjected to mRNA quantitation or ChIP-on-chip experiments with Affymetrix Rat Genome 230 2.0 microarrays.
Genome-wide histone methylation profile for heart failure.
No sample metadata fields
View SamplesLeft ventricle myocytes were prepared from patients with High or low ejection fraction, and subjected to mRNA profiling.
Genome-wide histone methylation profile for heart failure.
No sample metadata fields
View SamplesThe phagocytic elimination of cells undergoing apoptosis is an evolutionarily conserved innate immune mechanism for eliminating unnecessary cells. Previous studies showed an increase in the level of engulfment receptors in phagocytes after the phagocytosis of apoptotic cells, which leads to the enhancement of their phagocytic activity. However, precise mechanisms underlying this phenomenon require further clarification. We found that the pre-incubation of a Drosophila phagocyte cell line with the fragments of apoptotic cells enhanced the subsequent phagocytosis of apoptotic cells, accompanied by an augmented expression of the engulfment receptors Draper and integrin PS3. The DNA-binding activity of the transcription repressor Tailless was transiently raised in those phagocytes, depending on two partially overlapping signal-transduction pathways for the induction of phagocytosis as well as the occurrence of engulfment. The RNAi knockdown of tailless in phagocytes abrogated the enhancement of both phagocytosis and engulfment receptor expression. Furthermore, the hemocyte-specific RNAi of tailless reduced apoptotic cell clearance in Drosophila embryos. Taken together, we propose the following mechanism for the activation of Drosophila phagocytes after an encounter with apoptotic cells: two partially overlapping signaltransduction pathways for phagocytosis are initiated; transcription repressor Tailless is activated; expression of engulfment receptors is stimulated; and phagocytic activity is enhanced. This phenomenon most likely ensures the phagocytic elimination of apoptotic cells that stimulated phagocytes find thereafter and is thus considered as a mechanism to prime phagocytes in innate immunity.
Signaling pathway for phagocyte priming upon encounter with apoptotic cells.
Cell line, Treatment, Time
View SamplesThis series contain mouse and rat lung samples treated with mechanical ventilation and corresponded controls.
Bioinformatic identification of novel early stress response genes in rodent models of lung injury.
No sample metadata fields
View SamplesTo examine function of PKCh for atherosclerosis, we compared the gene expression profiles of control Apoe-/- and Prkch-/-Apoe-/- mice by microarray analysis.
PKCη deficiency improves lipid metabolism and atherosclerosis in apolipoprotein E-deficient mice.
Sex, Age, Specimen part, Treatment
View SamplesWe sought to confirm the genetic influence in the development of Ventilation-Associated Lung Injury (VALI) and, in the process, identify potential candidate genes involved in the disease by integrating differential gene expression profiling on rat lungs to a traditional strain survey analysis of the parental rat strains, VALI-sensitive Brown Norway rats versus VALI-resistant Dahl Salt Sensitive rats, comparing control (under room air ventilation) versus under high tidal volume (HTV) ventilation.
Use of consomic rats for genomic insights into ventilator-associated lung injury.
No sample metadata fields
View SamplesUsing primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was confirmed using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 expression without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to separate stem and progenitor cells, RNA-seq identified unique gene signatures for the separate populations which may serve as biomarkers. Pathways enrichment in stem cells identified ribosome biogenesis and membrane estrogen-receptor signaling with NF?B signaling enriched in progenitors and these were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified cancer stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland. Overall design: Comparing RNA-seq gene profiles in label-retaining prostate stem cells and non-retaining progenitor cells
Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution.
Specimen part, Subject
View SamplesThe expression profiles were determined using Affymetrix ATH1 arrays. Comparisons among the Col-0, ARF10 and mARF10 sample groups allow the identification of genes regulated by ARF10.
Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages.
No sample metadata fields
View SamplesThe use of cDNA microarrays has made it possible to analyze expression of thousands of genes simultaneously. We employed microarray gene expression profiling of porcine cDNA to compare myocardial gene expression in infarct core and remote myocardium at 1 week (n=3), 4 weeks (n=3), and 6 weeks (n=3) after surgically induced myocardial infarction (MI) and in sham-operated controls (n=3). More than 8,000 cDNA sequences were identified in myocardium that showed differential expression in response to MI. Different temporal and spatial patterns of gene expression were recognized in the infarct core tissue within this large set of data. Microarray gene profiling revealed candidate genes, some of them described for the first time, which elucidate changes in biological processes at different stages after MI.
Identification of temporal and region-specific myocardial gene expression patterns in response to infarction in swine.
Sex, Specimen part, Treatment, Time
View SamplesFormaldehyde, an important industrial chemical, is used for multiple commercial purposes throughout the industrialized world. This simple, one carbon aldehyde is a natural metabolite formed in cells throughput the body. However, it is also a rodent nasal carcinogen, when inhaled by rats every day for two-years at irritant concentrations. High tumor incidences occur at concentration of 10 ppm and above; no tumors are observed at concentrations below 6.0 ppm. The US Environmental Protection Agency (US EPA) is now (2007) conducting a risk assessment to try to evaluate possible cancer risks for much lower levels of human exposure. Sensitive methods are needed to evaluate tissue responses below those concentrations that are clearly irritant or carcinogenic. This microarray study was undertaken to evaluate the mode of action for nasal responses to inhaled formaldehyde in Fisher 344 rats over a range of exposure concentrations. The range of concentrations used spanned those at which virtually no tissue responses were observed (0.7 ppm) to those that represent the highest concentration in the cancer studies (15 ppm) that produced nasal tumors in half the exposed group of rats. The study identified doses at which there were no statistically significant changes in gene expression; intermediate doses with changes in a small number of genes not easily grouped by function; and then concentrations where changes were consistent with irritation and cell stress responses.
A method to integrate benchmark dose estimates with genomic data to assess the functional effects of chemical exposure.
Sex, Subject
View Samples