It is well-known that indomethacin (the cyclooxygenase 1 & 2 inhibitor) and RU486 (or mifepristone, the progesterone receptor antagonist) block follicular rupture in rats. To characterize genetic alterations in unruptured follicles, gene expression profiles in ovarian follicle were analyzed in indomethacin- and RU486-treated female Sprague-Dawley rats. Ovaries are collected at 22:00 on the proestrus day and 10:00 on the following estrus day after a single dose of indomethacin and RU486. Histopathologically, changes depicting responses to LH surge were observed in ovaries, uteri and vagina. Total RNA was extracted from pre-ovulatory follicles or unruptured follicles collected by laser microdissection and analyzed by GeneChip. Among genes showing statistically significant changes compared to control groups, following changes were considered relevant to induction of unruptured follicles. In indomethacin-treated rats, Wnt4 was down-regulated, suggesting effect on tissue integrity and steroid genesis. In RU486-treated rats, Adamts1, Adamts9, Edn2, Ednra, Lyve1, Plat, and Pparg were down-regulated. These changes suggest effects on proteolysis for extracellular matrix or surrounding tissue (Adamts1 & 9, and Plat), constriction of smooth muscle surrounding follicles (Edn2, Ednra, and Pparg), follicular fluid (Lyve1), and angiogenesis (Pparg). Down-regulation of angiogenesis related genes (Angpt2, Hmox1, and Vegfa) was observed in both treatment groups. Here, we clarify genetic alterations induced by the inhibition of cyclooxygenase or progesterone receptor.
Altered gene expression profile in ovarian follicle in rats treated with indomethacin and RU486.
Specimen part, Treatment
View SamplesThe availability of pluripotent stem cells offers the possibility of using such cells to model hepatic disease and development. With this in mind, we previously established a protocol that facilitates the differentiation of both human embryonic stem cells and induced pluritpotent cells into cells with hepatocyte characteristics. The use of highly defined culture conditions and the avoidance of feeder cells or embryoid bodies allowed synchronous and reproducible differentiation to occur. The differentiation toward a hepatocytelike fate appeared to recapitulate many of the stages normally associated with the formation of hepatocytes in vivo. In the current study we addressed the feasibility of using human pluripotent stem cells to probe the molecular mechanisms underlying human hepatocyte differentiation. We demonstrate i) that human ES cells express a number of mRNAs that characterize each stage in the differentiation process, ii) that gene expression can be efficiently depleted throughout the differentiation time course using shRNAs expressed from lentiviruses, and iii) that the nuclear hormone receptor HNF4a is essential for specification of human hepatic progenitor cells by establishing expression of the network of transcription factors that control hepatocyte cell fate.
HNF4A is essential for specification of hepatic progenitors from human pluripotent stem cells.
Specimen part, Time
View SamplesTamoxifen, a selective estrogen receptor modulator, is widely used in research and clinically in patients. Tamoxifen injection (3 consecutive days, intraperitoneal, 5mg/20g mouse body weight) causes dramatic rearrangement of the gastric mucosa with loss of > 90% of PCs, a 6-fold increase in proliferation in stem/progenitor cells, and morphological changes in the ZCs in the bases of gastric-units.
Identification of alanyl aminopeptidase (CD13) as a surface marker for isolation of mature gastric zymogenic chief cells.
Time
View SamplesReprogrammed somatic cells offer a valuable source of pluripotent cells that have the potential to differentiate into many cells types and provide a new tool for regenerative medicine. In the present study we differentiated induced pluripotent stem cells (iPS cells) into hepatic cells. We first showed that mouse iPS cells could from a complete liver in mouse embryo (E14.5) including hepatocytes, endothelial cells, sinusoidal cells and resident macrophages. We then designed a highly efficient hepatocyte differentiation protocol using defined factors on human embryonic stem cells (ES cells). This protocol was found to generate more than 80% albumin expressing cells that show hepatic functions and express most of liver genes as shown by microarray analyses. Similar results were obtained when human iPS cells were induced to differentiate following the same procedure.
Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells.
Specimen part, Cell line
View SamplesICR-derived glomerulonephritis (ICGN) mice is a novel inbred strain of mice with a hereditary nephrotic syndrome. Deletion mutation of tensin 2 (Tns2), a focal adhesion molecule, has been suggested to be responsible for nephrotic syndrome in ICGN mice, however, existence of other associative factors has been suggested. To identify additional associative factors and to better understand onset mechanism of nephrotic syndrome in ICGN mice, comprehensive gene expression analysis using DNA microarray was conducted. Immune-related pathways were markedly altered in ICGN mice kidney as compared with ICR mice. Furthermore, gene expression level of complement component 1, s subcomponent (C1s), whose human homologue has been reported to associate with lupus nephritis, was markedly low in ICGN mice kidney.
Gene expression analysis detected a low expression level of C1s gene in ICR-derived glomerulonephritis (ICGN) mice.
Age, Specimen part
View Samples