The physiological function of the immune system and the response to therapeutic immunomodulators may be sensitive to combinatorial cytokine micro-environments that shape the responses of specific immune cells. Previous work shows that paracrine cytokines released by virus-infected human dendritic cells (DC) can dictate the maturation state of nave DCs. To understand the effects of paracrine signaling, we systematically studied the effects of combinations cytokines in this complex mixture in generating an antiviral state. After nave DCs were exposed to either IFN or to paracrine signaling released by DCs infected by Newcastle Disease Virus (NDV), microarray analysis revealed a large number of genes that were differently regulated by the DC-secreted paracrine signaling. In order to identify the cytokine mechanisms involved, we identified 20 cytokines secreted by NDV infected DCs for which the corresponding receptor gene is expressed in nave DCs. By exposing cells to all combinations of 19 cytokines (leave-one-out studies) we identified 5 cytokines (IFN, TNF, IL-1, TNFSF15 and IL28) as candidates for regulating DC maturation markers. Subsequent experiments identified IFN, TNF and IL1 as the major synergistic contributors to this antiviral state. This finding was supported by infection studies in vitro, by T cell activation studies and by in vivo infection studies in mouse. Combination of cytokines can cause response states in DCs that differ from those achieved by the individual cytokines alone. These results suggest that the cytokine microenvironment may act via a combinatorial code to direct the response state of specific immune cells. Further elucidation of this code may provide insight into responses to infection and neoplasia as well as guide the development of combinatorial cytokine immunomodulation for infectious, autoimmune and immunosurveillance-related diseases.
Combinatorial cytokine code generates anti-viral state in dendritic cells.
Specimen part
View SamplesAge-dependent electrical and morphological remodeling of the Drosophila heart caused by hERG/seizure mutations
Age-dependent electrical and morphological remodeling of the Drosophila heart caused by hERG/seizure mutations.
No sample metadata fields
View SamplesThe tumorigenicity of human pluripotent stem cells (hPSCs) is a major safety concern for their application in regenerative medicine. Here we identify the tight-junction protein Claudin-6 as a specific cell surface marker of hPSCs that can be used to selectively remove Claudin-6-positive cells from mixed cultures. We show that Claudin-6 is absent in adult tissues but highly expressed in undifferentiated cells, where it is dispensable for hPSC survival and self-renewal. We use three different strategies to remove Claudin-6-positive cells from mixed populations: an antibody against Claudin-6; a cytotoxin-conjugated antibody that selectively targets undifferentiated cells; and clostridium perfringens enterotoxin, a toxin that binds several Claudins, including Claudin-6, and efficiently kills undifferentiated cells, thus eliminating the tumorigenic potential of hPSC-containing cultures. This work provides a proof of concept for the use of Claudin-6 to eliminate residual undifferentiated hPSCs from culture, highlighting a strategy that may increase the safety of hPSC-based cell therapies.
Immunologic and chemical targeting of the tight-junction protein Claudin-6 eliminates tumorigenic human pluripotent stem cells.
Specimen part, Cell line
View SamplesWe examine the role of Klf6 in oligodendrocyte progenitor cells and determine that Klf6 acts as a gp130-sensitive transactivator of the nuclear import factor importin-a5 (Impa5), a key controller of nuclear trafficking in oligodendrocytes. Overall design: Examination of expression profiles of 2 different cell stages exposed to siRNA vs. control
The Transcriptional Activator Krüppel-like Factor-6 Is Required for CNS Myelination.
Specimen part, Cell line, Subject
View SamplesTranscription termination factor Rho is essential in enterobacteria. We inhibited Rho activity with bicyclomycin and used microarray experiments to assess Rho function on a genome-wide scale. Rho is a global regulator of gene expression that matches E. coli transcription to translational needs. Remarkably, genes that are most repressed by Rho are prophages and other horizontally-acquired portions of the genome. Elimination of these foreign DNA elements increases resistance to bicyclomycin. Although rho remains essential, such reduced-genome bacteria no longer require Rho cofactors NusA and NusG. Thus, Rho termination, supported by NusA and NusG, is required to suppress the toxic activity of foreign DNA.
Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli.
Compound
View Samples