Mutations in BRCA1 and BRCA2 genes confer an increased lifetime risk for breast and ovarian cancer. Ovarian cancer risk can be decreased by risk-reducing salpingo-oophorectomy (RRSO). Studies on RRSO material have altered the paradigm of serous ovarian cancer pathogenesis.
Microarray analysis of differentially expressed genes in ovarian and fallopian tube epithelium from risk-reducing salpingo-oophorectomies.
Specimen part, Subject
View SamplesAround 20-25% of childhood acute lymphoblastic leukemias carry the TEL-AML1 (TA) fusion gene. It is a fusion of two central hematopoietic transcription factors, TEL (ETV6) and AML1 (RUNX1). Despite its prevalence, the exact genomic targets of TA have remained elusive. We evaluated gene loci and enhancers targeted by TA genome-wide in precursor B acute leukemia cells using global nuclear run-on sequencing (GRO-seq). Overall design: Nascent RNA expression profiles were generated with GRO-seq after TEL-AML1 expression in the Nalm6 pre-B-ALL cell line in four different time points (0, 4, 12 and 24 h). TEL-AML1-mut and luciferase induction cell lines were used as controls. Two replicates were included for all six samples.
Genome-wide repression of eRNA and target gene loci by the ETV6-RUNX1 fusion in acute leukemia.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer.
Specimen part, Cell line, Time
View SamplesAltered patterns of transcription factor (TF) binding are now accepted as a hallmark of many aggressive cancers including prostate and breast cancers1,2. This implies that underlying global changes in chromatin accessibility may drive cancer progression, as previously hypothesized3-5. In addition there are epigenetic readers such as bromodomain containing protein 4 (BRD4), which have been shown to associate with these TFs6-8 and also to contribute to aggressive cancers of many types8,9 including prostate cancer (PC)6,10. Here we show for the first time that formaldehyde-assisted isolation of regulatory elements followed by sequencing (FAIRE-seq) applied to human prostate tumors tissue can define castrate-resistant prostate cancer (CRPC) and can be used to inform the discovery of gene-level classifiers for therapy. In addition, we show that the androgen receptor (AR) overexpression alone is a primary driver for chromatin relaxation and that this effect can be reversed using bromodomain inhibitors. We also report that bromodomain-containing proteins (BRDs) are overexpressed in advanced CRPCs and that ATAD2 and BRD2 have prognostic value. In conclusion, this is the first study demonstrating a major impact of BRDs on chromatin accessibility in CRPC in patient samples. Consequently, targeting bromodomains provides a compelling rational for combination therapy in which BRD-mediated TF binding is enhanced or modified as cancer progresses.
Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer.
Time
View Samples