This SuperSeries is composed of the SubSeries listed below.
Gene expression in whole lung and pulmonary macrophages reflects the dynamic pathology associated with airway surface dehydration.
No sample metadata fields
View SamplesScnn1b-Tg mice overexpress the beta subunit of the epithelial sodium channel (Scnn1b) in airway Club cells. The general phenotype of these mice is described in three published manuscripts (Mall et al. 2004, Nature Medicine, 10(5):487-93; Mall et al. 2008, Am J Respir Crit Care Med. 177(7):730-42; and Livraghi-Butrico et al. 2012, Physiol. Genomics 44(8):470-84. Briefly, overexpression of the Scnn1b transgene in airway Club cells leads to hyperabsorption of sodium from the airway surface liquid, dehydrated airway surface liquid and mucus, and reduced mucus clearance associated with accumulation of mucus plugs/plaques. The data provided here represents mRNA expression data from disseccted whole trachea (distal and proximal ends cut 3-4 cartliage rings below the larynx and just above the bifurcation, respectively) from male WT and Scnn1b-Tg littermates (C57Bl/6NTac background) at 4 time points [postnatal days (PND) 0, 3, 10, and 42]. PND 0 trachea are histologically normal, a tracheal mucus plug/obstruction develops around PND 3, the plug is receding to more distal airways by PND 10, and the trachea is again histologically normal by PND 42. The data from the WT mice provides a global look at mRNA changes across time, while the data from the Scnn1b-Tg line provides mRNA data that allows differential gene expression due to mucus obstruction to be queried.
Gene expression in whole lung and pulmonary macrophages reflects the dynamic pathology associated with airway surface dehydration.
No sample metadata fields
View SamplesMicroarrays were used to evaluate the effects of azithromycin and an inflammatory stimulus (SMM) on human airway epithelium. Effects of azithromycin treatment were evaluated at 6, 24 and 48 hours. Effects of SMM were evaluated at 6 and 24 hours. In addition, pretreatment with azithromycin was used to evaluate the modulatory effects on SMM-induced inflammation. SMM=supernatant from microcorpulent material from human cystic fibrosis airways.
Azithromycin treatment alters gene expression in inflammatory, lipid metabolism, and cell cycle pathways in well-differentiated human airway epithelia.
No sample metadata fields
View SamplesScnn1b-Tg mice overexpress the beta subunit of the epithelial sodium channel (Scnn1b) in airway Club cells. The general phenotype of these mice is described in three published manuscripts (Mall et al. 2004, Nature Medicine, 10(5):487-93; Mall et al. 2008, Am J Respir Crit Care Med. 177(7):730-42; Livraghi-Butrico et al. 2012, Physiol. Genomics 44(8):470-84; and Livraghi-Butrico et al. 2012, Mucosal Immunology 5(4):397-408). Briefly, overexpression of the Scnn1b transgene in airway Club cells leads to hyperabsorption of sodium from the airway surface liquid, which causes airway surface liquid and mucus dehydration, resulting in reduced mucus clearance and airway mucus obstruction. The data provided here represents mRNA expression data from dissected whole trachea (distal and proximal ends were cut 3-4 cartilage rings below the larynx and just above the bifurcation, respectively) from male WT and Scnn1b-Tg littermates (C57Bl/6N Tac background) at 4 time points [postnatal days (PND) 0, 3, 10, and 42]. Histologically, PND 0 trachea are normal, a tracheal mucus plug/obstruction develops around PND 3 and typically recedes to the intrapulmonary airways after PND 10, and the trachea is again histologically normal by PND 42. The data from the WT mice provides a global look at mRNA post-natal developmental changes, while the data from the Scnn1b-Tg line provides mRNA data that allows differential gene expression due to airway mucus obstruction to be queried.
Gene expression in whole lung and pulmonary macrophages reflects the dynamic pathology associated with airway surface dehydration.
No sample metadata fields
View SamplesScnn1b-Tg mice overexpress the beta subunit of the epithelial sodium channel (Scnn1b) in airway Club cells. The general phenotype of these mice is described in three published manuscripts (Mall et al. 2004, Nature Medicine, 10(5):487-93; Mall et al. 2008, Am J Respir Crit Care Med. 177(7):730-42; Livraghi-Butrico et al. 2012, Physiol. Genomics 44(8):470-84; and Livraghi-Butrico et al. 2012, Mucosal Immunology 5(4):397-408). Briefly, overexpression of the Scnn1b transgene in airway Club cells leads to hyperabsorption of sodium from the airway surface liquid, which causes airway surface liquid and mucus dehydration, resulting in reduced mucus clearance and airway mucus obstruction. The data provided here represents mRNA expression data from disseccted whole lung from male WT and Scnn1b-transgenic littermates (C57Bl/6NTac background) at 4 time points [postnatal days (PND) 0, 3, 10, and 42]. Histologically, PND 0 lungs are normal, at PND 3 the intrapulmonary airways exhibit transient and spotty Club cell necrosis, and by PND 10 airway mucus obstruction is evident in the proximal portion of the intrapulmonary main stem bronchus. At PND 42, Scnn1b-Tg lungs are charactyerized by chronic low level inflammation, with activated macrophages, neutrophilia, eosinophilia and increased incidence of bronchus-associated lymphoid tissue. The data from the WT mice provides a global look at mRNA post-natal developmental changes, while the data from the Scnn1b-transgenic line allows differential gene expression due to airway surface liquid dehydration and mucus obstruction to be queried.
Gene expression in whole lung and pulmonary macrophages reflects the dynamic pathology associated with airway surface dehydration.
No sample metadata fields
View SamplesEts homologous factor (EHF) is an Ets family transcription factor expressed in many epithelial cell types including those lining the respiratory system. Disruption of the airway epithelium is central to many lung diseases, and a network of transcription factors coordinates its normal function. EHF can act as a transcriptional activator or a repressor, though its targets in lung epithelial cells are largely uncharacterized. RNA-seq after EHF depletion or overexpression showed significant alterations in the expression of genes involved in response to wounding. EHF knockdown also targeted genes in pathways of epithelial development and differentiation and locomotory behavior. Overall design: mRNA profiles from Calu-3 cells treated with negative control (NC) or EHF siRNA, in quintuplicate. mRNA profiles from 3 pcDNA (empty vector control) clones and 3 pcDNA-EHF overexpression A549 clones, 3-4 replicates each.
Ets homologous factor regulates pathways controlling response to injury in airway epithelial cells.
No sample metadata fields
View SamplesGoals of this study were to identify new candidates involved in the development of the Atrioventricular cushions in the mouse heart.
Cartilage link protein 1 (Crtl1), an extracellular matrix component playing an important role in heart development.
No sample metadata fields
View SamplesMicroRNAs (miRNAs) are a class of small RNA molecules that regulate expression of specific mRNA targets. They can be released from cells, often encapsulated within extracellular vesicles (EVs), and therefore have the potential to mediate intercellular communication. It has been suggested that certain miRNAs may be selectively exported, although the mechanism has yet to be identified. Manipulation of the miRNA content of EVs will be important for future therapeutic applications. We therefore wished to assess which endogenous miRNAs are enriched in EVs and how effectively an overexpressed miRNA would be exported. Small RNA libraries from HEK293T cells and vesicles before or after transfection with a vector for miR-146 overexpression were analysed by deep sequencing. A subset of miRNAs was found to be enriched in EVs. The global expression data provided by deep sequencing confirms that specific miRNAs are enriched in EVs released by HEK293T cells. Overall design: Cells were transfected with a plasmid to direct overexpression of miR-146a. Extracellular vesicles were isolated by ultracentrifugation from untreated and transfected cells. RNA was isolated from one sample each of untreated and transfected cells and vesicles.Small RNA libraries were prepared for sequencing.
Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types.
Specimen part, Subject
View SamplesThe inner ear develops from a patch of thickened cranial ectoderm adjacent to the hindbrain called the otic placode. Studies in a number of vertebrate species suggest that the initial steps in induction of the otic placode are regulated by members of the Fibroblast Growth Factor (FGF) family, and that inhibition of FGF signaling can prevent otic placode formation. To better understand the genetic pathways activated by FGF signaling during otic placode induction, we performed microarray experiments to estimate the proportion of chicken otic placode genes that can be up-regulated by the FGF pathway in a simple culture model of otic placode induction. Surprisingly, we find that FGF is only sufficient to induce about 15% of chick otic placode-specific genes in our experimental system. However, pharmacological blockade of the FGF pathway in cultured chick embryos showed that although FGF signaling was not sufficient to induce the majority of otic placode-specific genes, it was still necessary for their expression in vivo. These inhibitor experiments further suggest that the early steps in otic placode induction regulated by FGF signaling occur through the MAP kinase pathway. Although our work suggests that FGF signaling is necessary for otic placode induction, it demonstrates that other unidentified signaling pathways are required to co-operate with FGF signaling to induce the full otic placode program.
Analysis of FGF-dependent and FGF-independent pathways in otic placode induction.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Tribbles 3: a novel regulator of TLR2-mediated signaling in response to Helicobacter pylori lipopolysaccharide.
Specimen part, Cell line
View Samples