Gene expression profiling of BMMC from patients with rheumatoid arthritis (RA) vs. osteoarthritis (OA).
Abnormal networks of immune response-related molecules in bone marrow cells from patients with rheumatoid arthritis as revealed by DNA microarray analysis.
Sex, Age, Specimen part, Disease
View SamplesWhile the existence of intestinal epithelial stem cells (IESCs) has been well established, their study has been limited due to the inability to isolate them. Previous work has utilized side population (SP) sorting of the murine small intestinal mucosa to isolate a viable fraction of cells enriched for putative IESCs. We have used microarray analyses to characterize the molecular features of this potential stem cell population.
Molecular properties of side population-sorted cells from mouse small intestine.
No sample metadata fields
View SamplesFibroblasts are the principal stromal cells that exist in whole organs and play vital roles in many biological processes. Although the functional diversity of fibroblasts has been estimated, a comprehensive analysis of fibroblasts from the whole body has not been performed and their phenotypical diversity has not been sufficiently explored. The aim of this study was to elucidate the phenotypical diversity of human fibroblasts within the whole body.
Gastrointestinal Fibroblasts Have Specialized, Diverse Transcriptional Phenotypes: A Comprehensive Gene Expression Analysis of Human Fibroblasts.
Sex, Age, Specimen part
View SamplesCumulus-oocyte complexes were isolated a seperate time-points to generate temporal complexes. Targets from two biological replicates at each time point (0h, 8h, 16h post-hCG treatment) were generated and the expression profiles were determined using Affymetrix GeneChip Mouse Genome 430 2.0 Arrays. Comparisons between the sample groups allow the identification of genes with temporal expression patterns.
Gene expression profiles of cumulus cell oocyte complexes during ovulation reveal cumulus cells express neuronal and immune-related genes: does this expand their role in the ovulation process?
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Toward Signaling-Driven Biomarkers Immune to Normal Tissue Contamination.
Disease, Disease stage
View SamplesTo define the molecular abnormalities at the stem cell level in polycythemia vera (PV), we examined global gene expression in circulating CD34+ cells from 19 JAK2 V617F-positive PV patients and 6 normal individuals using Affymetrix oligonucleotide microarray technology. We observed that CD34+ cell gene expression not only differed between the PV patients and the normal controls but also between men and women PV patients. Based on these gender-specific differences in gene expression, we were able to identify 102 genes differentially regulated concordantly by both men and women, which likely represent a core set of genes whose dysregulation is involved in the pathogenesis of PV. Gene expression was verified by Q-PCR of patient CD34+ cell RNA. Using the 102 gene set and unsupervised hierarchical clustering, the 19 PV patients could be separated in two groups that differed significantly with respect to hemoglobin level, thrombosis frequency, splenomegaly, splenectomy or chemotherapy exposure, leukemic transformation and overall survival. These results were confirmed using top scoring pairs, which identified a different set of 29 genes that independently segregated the 19 patients into the same two clinical groups: those with an aggressive form of the disease (7 patients), and those with an indolent form (12 patients).
Two clinical phenotypes in polycythemia vera.
Sex, Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptional profiling of bipotential embryonic liver cells to identify liver progenitor cell surface markers.
Specimen part, Cell line
View SamplesFibroblasts isolated from human colon submucosal and subperitoneal layer were stimulated by colon cancer cell line (DLD-1) cultured medium. Peritoneal invasion in colon cancer is an important prognostic factor, and the fibrosis with -SMA was a significant pathological feature of the cancer microenvironment formed by peritoneal invasion (CMPI).
Human subperitoneal fibroblast and cancer cell interaction creates microenvironment that enhances tumor progression and metastasis.
Sex, Age, Specimen part
View SamplesThe ability to purify to homogeneity a population of hepatic progenitor cells from adult liver is critical for their characterization prior to any therapeutic application. As a step in this direction, we have utilized gene profiling of a bipotential liver cell line from dpc 14 mouse embryonic liver to catalog genes expressed by liver progenitor cells. These cells, known as Bipotential Mouse Embryonic Liver (BMEL) cells, proliferate in an undifferentiated state and are capable of differentiating into hepatocyte-like and cholangiocyte-like cells in vitro. Upon transplantation, BMEL cells are capable of differentiating into hepatocytes and cholangiocytes in vivo. Microarray analysis of gene expression in the 9A1 and 14B3 BMEL cell lines grown under proliferating and differentiating conditions was used to identify cell surface markers preferentially expressed in the bipotential undifferentiated state. This analysis revealed that proliferating BMEL cells express many genes involved in cell cycle regulation whereas differentiation of BMEL cells by cell aggregation causes a switch in gene expression to functions characteristic of mature hepatocytes. In addition, microarray data and protein analysis indicated that the Notch signaling pathway could be involved in maintaining BMEL cells in an undifferentiated stem cell state. Using GO annotation, a list of cell surface markers preferentially expressed on undifferentiated BMEL cells was generated. One marker, Cd24a, is specifically expressed on progenitor oval cells in livers of DDC treated animals. We therefore consider Cd24a expression a candidate molecule for purification of hepatic progenitor cells.
Transcriptional profiling of bipotential embryonic liver cells to identify liver progenitor cell surface markers.
Specimen part, Cell line
View SamplesThe ability to purify to homogeneity a population of hepatic progenitor cells from adult liver is critical for their characterization prior to any therapeutic application. As a step in this direction, we have utilized gene profiling of a bipotential liver cell line from dpc 14 mouse embryonic liver to catalog genes expressed by liver progenitor cells. These cells, known as Bipotential Mouse Embryonic Liver (BMEL) cells, proliferate in an undifferentiated state and are capable of differentiating into hepatocyte-like and cholangiocyte-like cells in vitro. Upon transplantation, BMEL cells are capable of differentiating into hepatocytes and cholangiocytes in vivo. Microarray analysis of gene expression in the 9A1 and 14B3 BMEL cell lines grown under proliferating and differentiating conditions was used to identify cell surface markers preferentially expressed in the bipotential undifferentiated state. This analysis revealed that proliferating BMEL cells express many genes involved in cell cycle regulation whereas differentiation of BMEL cells by cell aggregation causes a switch in gene expression to functions characteristic of mature hepatocytes. In addition, microarray data and protein analysis indicated that the Notch signaling pathway could be involved in maintaining BMEL cells in an undifferentiated stem cell state. Using GO annotation, a list of cell surface markers preferentially expressed on undifferentiated BMEL cells was generated. One marker, Cd24a, is specifically expressed on progenitor oval cells in livers of DDC treated animals. We therefore consider Cd24a expression a candidate molecule for purification of hepatic progenitor cells.
Transcriptional profiling of bipotential embryonic liver cells to identify liver progenitor cell surface markers.
Specimen part, Cell line
View Samples