Poorly differentiated type synovial sarcoma (PDSS) is a variant of synovial sarcoma characterized by predominantly round or short-spindled cells. Although accumulating evidence from clinicopathological studies suggests a strong association between this variant of synovial sarcoma and poor prognosis, little has been reported on the molecular basis of PDSS. To gain insight into the mechanism(s) that underlie the emergence of PDSS, we analyzed the gene expression profiles of 34 synovial sarcoma clinical samples, including 5 cases of PDSS, using an oligonucleotide microarray. In an unsupervised analysis, the 34 samples fell into 3 groups that correlated highly with histological subtype, namely, monophasic, biphasic, and poorly differentiated types. PDSS was characterized by down-regulation of genes associated with neuronal and skeletal development and cell adhesion, and up-regulation of genes on a specific chromosomal locus, 8q21.11. This locus-specific transcriptional activation in PDSS was confirmed by reverse transcriptase (RT)-PCR analysis of 9 additional synovial sarcoma samples. Our results indicate that PDSS tumors constitute a distinct genetic group based on expression profiles.
Gene expression profiling of synovial sarcoma: distinct signature of poorly differentiated type.
Sex, Specimen part
View SamplesWe previously identified the ZTRE in genes involved in zinc homeostasis and showed that it mediates transcriptional repression in response to zinc. We now report that ZNF658 acts at the ZTRE. ZNF658 was identified by MALDI-TOF mass spectrometry of a band excised after EMSA using a ZTRE probe. The protein contains a KRAB domain and 21 zinc fingers. It has similarity with ZAP1 from Saccharomyces cerevisiae, which regulates the response to zinc restriction, including a conserved DNA binding region we show to be functional also in ZNF658. siRNA targeted to ZNF658 abrogated the zinc-induced, ZTRE-dependent reduction in SLC30A5 (ZnT5), SLC30A10 (ZnT10) and CBWD transcripts in human Caco-2 cells and the ability of zinc to repress reporter gene expression from corresponding promoter-reporter constructs. Microarray analysis of the effect of reducing ZNF658 expression by siRNA uncovered large changes in rRNA. We find that ZTREs are clustered within the 45S rRNA precursor. We also saw effects on expression of multiple ribosomal proteins. ZNF658 thus links zinc homeostasis with ribosome biogenesis, the most active transcriptional, and hence zinc-demanding, process in the cell. ZNF658 is thus a novel transcriptional regulator that plays a fundamental role in the orchestrated cellular response to zinc availability.
The zinc finger protein ZNF658 regulates the transcription of genes involved in zinc homeostasis and affects ribosome biogenesis through the zinc transcriptional regulatory element.
Cell line
View SamplesSpermatogonial stem cells (SSCs) have pluripotent potential. However, frequency of pluripotent cell derivation is low and the mechanism of culture-induced reprogramming remains unknown. Here we report that epigenetic instability of germline stem (GS) cells, cultured SSCs, induces pluripotent cell derivation. GS cells undergo DNA demethylation in H19 differentially methylated region under low-density culture. When H19 demethylation was induced by Dnmt1 depletion, they converted into embryonic stem (ES)-like cells. Dnmt1 depletion downregulated Dmrt1 expression, whose depletion also induced pluripotency. Functional screening of Dmrt1 target gene revealed that Dmrt1 depletion upregulates Sox2, the key molecule responsible for generating induced pluripotent stem cells. Although Sox2 transfection upregulated Oct4 and produced pluripotent cells, this conversion was inhibited by Oct1 overexpression, suggesting that the balance of Oct proteins maintains SSC identity. These results suggest that culture-induced reprogramming is caused by unstable DNA methylation, and that Dmrt1-Sox2 cascade is critical for regulating pluripotency in SSCs.
Regulation of pluripotency in male germline stem cells by Dmrt1.
Specimen part, Treatment
View SamplesDendritic cells (DCs) are the sentinels of the mammalian immune system and they undergo a complex maturation process mediated by activation upon pathogen detection. Recent studies described the analysis of activated DCs by transcriptional profiling, but translation regulation was never taken in account. Therefore, the nature of the mRNAs being translated at various stages of DC activation was determined with the help of translational profiling, which is the sucrose gradient fractionation of polysomal-bound mRNAs combined to microarrays analysis. Total and polysomal-bound mRNA populations were compared in immature (0h) and LPS-stimulated (4h and 16h) human monocyte-derived DCs with the help of Affymetrix microarrays. Biostatistical analysis indicated that 296 mRNA molecules are translationally regulated during DC-activation. The most abundant biological process among the regulated mRNAs was protein biosynthesis, indicating the existence of a negative feedback loop regulating translation. Interestingly, a cluster of 17 ribosomal proteins were part of the regulated mRNAs, indicating that translation may be fine-tuned by particular components of the translational machinery. Our observations highlight the importance of translation regulation during the immune response, and may favour the identification of novel gene clusters or protein networks relevant for immunity. Our study also provides information on the possible absence of correlation between gene expression and real protein production in DCs.
Ribosomal protein mRNAs are translationally-regulated during human dendritic cells activation by LPS.
No sample metadata fields
View SamplesA single spermatogonial stem cell can aquire pluripotentiality but that conversion into a pluripotent cell type is accompanied by loss of spermatogenic potential.
Pluripotency of a single spermatogonial stem cell in mice.
No sample metadata fields
View SamplesThe mammalian Y chromosome plays a critical role in spermatogenesis. However, the exact functions of each gene in the Y chromosome have not been completely elucidated, partly owing to difficulties in gene targeting analysis for the Y chromosome. Zfy was first proposed to be a sex determination factor, but its function in spermatogenesis has been recently elucidated. Nevertheless, Zfy gene targeting analysis has not been performed thus far. Here, we adopted the highly efficient CRISPR/Cas9 system to generate individual Zfy1 or Zfy2 knockout (KO) mice, and Zfy1 and Zfy2 double knockout (Zfy1/2-DKO) mice. While individual Zfy1 or Zfy2-KO mice did not show any significant phenotypic alterations in fertility, Zfy1/2-DKO mice were infertile and displayed abnormal sperm morphology, fertilization failure, and early embryonic development failure. Mass spectrometric screening, followed by confirmation with western blot analysis, showed that PLCZ1, PLCD4, PRSS21, and HTT protein expression was significantly deceased in spermatozoa from Zfy1/2-DKO mice compared with those from wild type mice. These results are consistent with the phenotypic changes seen in the double mutant mice. Collectively, our strategy and findings revealed that Zfy1 and Zfy2 have redundant functions in spermatogenesis, facilitating a better understanding of fertilization failure and early embryonic development failure.
Complementary Critical Functions of Zfy1 and Zfy2 in Mouse Spermatogenesis and Reproduction.
Age, Specimen part
View SamplesEPC1/TIP60-mediated histone acetylation facilitates spermiogenesis in mice Overall design: Gene expression was analyzed using WT and deficient mice for both Epc1 and Epc2.
EPC1/TIP60-Mediated Histone Acetylation Facilitates Spermiogenesis in Mice.
Cell line, Subject
View SamplesWe report the phenotype of human lung ILC2 and ILC3 populations from individuals with tuberculosis (TB) and non-TB cancer controls. We find that ILC2s demonstrate moderate transcriptional differences in TB infection, whereas ILC3s demonstrate large differences. Overall design: ILC2s and ILC3s were purified by FACS from lung biopsies from TB infected lung tissue and peripheral healthy lung tissue from individuals with cancer. Low-input RNA-seq was performed on 1-3 replicates (dependent on cell number) on 5 individuals with TB infection and 2 controls.
Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis.
Specimen part, Disease, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Telomere dysfunction drives aberrant hematopoietic differentiation and myelodysplastic syndrome.
Sex, Specimen part
View SamplesTelomere dysfunctional CMP/GMP have deregulated pathways that are associated with DNA damage signaling
Telomere dysfunction drives aberrant hematopoietic differentiation and myelodysplastic syndrome.
Sex, Specimen part
View Samples