This SuperSeries is composed of the SubSeries listed below.
Glioblastoma Cell Malignancy and Drug Sensitivity Are Affected by the Cell of Origin.
Specimen part
View SamplesThe cell of origin in glioblastoma is not formally proven but generally accepted to be a neural stem cell or glial precursor cell. In addition, there is also limited knowledge about the functional consequences of the cell of origin for glioblastoma development and response to therapy.
Glioblastoma Cell Malignancy and Drug Sensitivity Are Affected by the Cell of Origin.
Specimen part
View SamplesThe cell of origin in glioblastoma is not formally proven but generally accepted to be a neural stem cell or glial precursor cell. In addition, there is also limited knowledge about the functional consequences of the cell of origin for glioblastoma development and response to therapy.
Glioblastoma Cell Malignancy and Drug Sensitivity Are Affected by the Cell of Origin.
Specimen part
View SamplesGene expression profiling of normal hematopoietic cell subpopulations
Gene expression signatures in childhood acute leukemias are largely unique and distinct from those of normal tissues and other malignancies.
Specimen part
View SamplesTranscriptional expression data for bioactive small molecules for mechanism identification.
Identification of a novel topoisomerase inhibitor effective in cells overexpressing drug efflux transporters.
No sample metadata fields
View SamplesM21 or M21L cells were grown either in a 2-dimensional culture (on plastic) or in a 3-dimensional-collagen model.
Protein kinase Cα (PKCα) regulates p53 localization and melanoma cell survival downstream of integrin αv in three-dimensional collagen and in vivo.
Cell line
View SamplesMicroarray based mRNA profiling was used to identify the mechanism of action for the small molecule b-AP15.
Inhibition of proteasome deubiquitinating activity as a new cancer therapy.
Cell line, Treatment
View SamplesThe 8p11 myeloproliferative syndrome (EMS), also referred to as the stem cell leukemia/lymphoma syndrome, is a chronic myeloproliferative disorder that rapidly progresses into an acute leukemia. Molecularly, EMS is characterized by fusion of various partner genes to the FGFR1 gene, resulting in constitutive activation of the tyrosine kinase activity within FGFR1. The two most common fusion genes in human EMS are ZMYM2/FGFR1 (previously known as ZNF198/FGFR1) and BCR/FGFR1. To study the transcriptional programs becoming deregulated by the FGFR1 fusion genes, global gene expression analysis on human CD34+ cord blood cells expressing either of the fusion oncogenes ZMYM2/FGFR1 and BCR/FGFR1 was performed. As a reference gene we also included the more studied BCR/ABL1 fusion oncogene associated with chronic myeloid leukemia. We found that the 3 different fusion oncogenes had in common the upregulation of several genes involved in the JAK/STAT signalling pathway and also other sets of genes. However, the gene expression profiles were not identical, suggesting that both the tyrosine kinase containing gene and the partner gene would affect the transcription of downstream target genes.
Modeling the human 8p11-myeloproliferative syndrome in immunodeficient mice.
No sample metadata fields
View SamplesMicroarray based mRNA profiling was used to identify the mechanism of action for the small molecule VLX600.
Iron chelators target both proliferating and quiescent cancer cells.
Disease, Cell line, Treatment
View SamplesVoluntary exercise reduces the risk of cancer and lowers the risk of disease recurrence. Yet the mechanisms for this protection remain to be elucidated. Here we demonstrate that exercise halves tumor growth through an exercise-dependent mobilization and intratumoral infiltration of NK cells in malignant melanoma. Using voluntary wheel running, we show that exercise prior to and during B16 tumor challenge reduced tumor growth by 67%, and this reduction was associated with increased inflammation and immune cell infiltrates, especially NK cells, in the tumors from exercising mice. Depletion of NK cells blunted the exercise-dependent reduction in tumor growth. Moreover, during exercise, NK cells were engaged through an epinephrine-dependent mobilization to the circulation and redistributed to peripheral tissues through an IL-6 dependent mechanism. This study highlights the importance of exercise-dependent immune regulation in the control of malignant melanoma
Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Mobilization and Redistribution.
Sex, Specimen part
View Samples