Airway epithelial cells and macrophages differ markedly in their responses to influenza A virus (IAV) infection. To investigate transcriptional responses underlying these differences, purified subsets of type II airway epithelial cells (ATII) and alveolar macrophages (AM) recovered from the lungs of mock- or IAV-infected mice were subjected to RNA sequencing. In the absence of infection, AM predominantly expressed genes related to immunity whereas ATII expressed genes consistent with their physiological roles in the lung. Following IAV infection, AM almost exclusively activated cell-intrinsic antiviral pathways that were dependent on interferon regulatory factor (IRF)3/7 and/or type I interferon (IFN) signaling. In contrast, IAV-infected ATII activated a broader range of physiological responses, including cell-intrinsic antiviral pathways, which were both independent and dependent on IRF3/7 and/or type I IFN. These data suggest that transcriptional profiles hardwired during development could be a major determinant underlying the different responses of ATII and AM to IAV infection. Overall design: 96 samples were analyzed: (A) 4 replicates of HA+ Alveolar Macrophage (AM) and 4 replicates of CD103+ Dendritic cells (DC) isolated from the lung lobes of C57/BL6 mice on 9 h p.i. with PR8. 4 replicates of mock-infected (HA-) AM and 4 replicates of mock-infected (HA-) CD103+ DC isolated from the lung lobes of mock-infected C57/BL6 mice on 9 h p.i. with allantoic fluid of equal dilution as PR8. 4 replicates of HA+ Airway epithelial cell Type II (ATII) and 4 replicates of HA+ Ciliated Cell (CC) isolated from the lung lobes of C57/BL6 mice on 9 h p.i. with PR8. 4 replicates of mock-infected (HA-) ATII and 4 replicates of mock-infected (HA-) CC isolated from the lung lobes of mock-infected C57/BL6 mice on 9 h p.i. with allantoic fluid of equal dilution as PR8. (B) 4 replicates of HA+ AM and 4 replicates of CD103+ DC isolated from the lung lobes of IFNAR2-/- mice on 9 h p.i. with PR8. 4 replicates of mock-infected (HA-) AM and 4 replicates of mock-infected (HA-) CD103+ DC isolated from the lung lobes of mock-infected IFNAR2-/- mice on 9 h p.i. with allantoic fluid of equal dilution as PR8. 4 replicates of HA+ ATII and 4 replicates of HA+ CC isolated from the lung lobes of IFNAR2-/- mice on 9 h p.i. with PR8. 4 replicates of mock-infected (HA-) ATII and 4 replicates of mock-infected (HA-) CC isolated from the lung lobes of mock-infected IFNAR2-/- mice on 9 h p.i. with allantoic fluid of equal dilution as PR8. (C) 4 replicates of HA+ AM and 4 replicates of CD103+ DC isolated from the lung lobes of IRF3/7-/- mice on 9 h p.i. with PR8. 4 replicates of mock-infected (HA-) AM and 4 replicates of mock-infected (HA-) CD103+ DC isolated from the lung lobes of mock-infected IRF3/7-/- mice on 9 h p.i. with allantoic fluid of equal dilution as PR8. 4 replicates of HA+ ATII and 4 replicates of HA+ CC isolated from the lung lobes of IRF3/7-/- mice on 9 h p.i. with PR8. 4 replicates of mock-infected (HA-) ATII and 4 replicates of mock-infected (HA-) CC isolated from the lung lobes of mock-infected IRF3/7-/- mice on 9 h p.i. with allantoic fluid of equal dilution as PR8.
Unique Transcriptional Architecture in Airway Epithelial Cells and Macrophages Shapes Distinct Responses following Influenza Virus Infection <i>Ex Vivo</i>.
Specimen part, Subject
View SamplesTo understand CD8 effector T cell differentiation in more detial we have used transcriptional profiling of antigen-specific CD8 T cells deficient in Blimp1, IL-2ra, or both, or Tbet. We reveal a common program of effector differentiation regulated by cytokine signaling and the combined activities of Blimp1 and T-bet, indicating remarkable redundancy and specificity in the control of genes involved in the differentiation of effector T cells. Overall design: Bone marrow chimeric mice were generated containing congenically marked wildtype and mutant heamatopoietic cells. The mice were infected with primed with PR8 influenza virus. Six weeks later they were infected with the heterologous HKx31 influenza virus. Antigen-specific (NP366) positive CD8 T cells were sorted. RNA was exracted and RNA sequening performed.
A molecular threshold for effector CD8(+) T cell differentiation controlled by transcription factors Blimp-1 and T-bet.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Prenatal arsenic exposure and the epigenome: altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood.
Specimen part
View SamplesThe Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Gmez Palacio, Mexico was recently established to better understand the impacts of prenatal exposure to inorganic arsenic (iAs). In this study, we examined a subset (n=40) of newborn cord blood samples for microRNA (miRNA) expression changes associated with in utero arsenic exposure. Levels of iAs in maternal drinking water (DW-iAs) and maternal urine were assessed. Levels of DW-iAs ranged from below detectable values to 236 g/L (mean=51.7 g/L). Total arsenic in maternal urine (U-tAs) was defined as the sum of iAs and its monomethylated and dimethylated metabolites (MMAs and DMAs, respectively) and ranged from 6.2 to 319.7 g/L (mean=64.5 g/L). Genome-wide miRNA expression analysis of cord blood revealed 12 miRNAs with increasing expression associated with U-tAs. Transcriptional targets of the miRNAs were computationally predicted and subsequently assessed using transcriptional profiling. Pathway analysis demonstrated that the U-tAs-associated miRNAs are involved in signaling pathways related to known health outcomes of iAs exposure including cancer and diabetes mellitus. Immune response-related mRNAs were also identified with decreased expression levels associated with U-tAs, and predicted to be mediated in part by the arsenic-responsive miRNAs. Results of this study highlight miRNAs as novel responders to prenatal arsenic exposure that may contribute to associated immune response perturbations.
Prenatal arsenic exposure and the epigenome: altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood.
Specimen part
View SamplesExpression profiling of a panel of 101 adult male germ cell tumors and 5 normal testis specimens was performed on Affymetrix U133A and U133B microarrays. This data has been used to:
Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors.
No sample metadata fields
View SamplesIn comparing gene expression of normal and CML CD34+ quiescent (G0) and proliferating (G1/S/G2/M) cells, 292 genes were down-regulated and 192 genes were up-regulated in the CML G0 cells. The differentially expressed genes were grouped according to their reported functions and correlations were sought with biological differences previously observed between the same groups. The most apparent correlations include: i) Normal and CML G0 cells are more primitive than G1/S/G2/M cells; ii) CML G0 cells are in a more advanced stage of development and more poised to begin proliferating than normal G0 cells; iii) When CML G0 cells are stimulated to proliferate, they undergo further differentiation and maturation more rapidly than normal G0 cells, but both granulopoiesis and erythropoiesis are less efficient than normal; iv) Whereas normal G0 cells form only granulocyte/monocyte (GM) colonies when stimulated by cytokines, CML G0 cells consistently form a combination of GM and erythroid clusters and colonies; and v) Prominin-1 (CD133) is the gene most down-regulated in CML G0 cells and its down-regulation appears to be associated with the spontaneous formation of erythroid colonies by CML progenitors without EPO. The gene most over-expressed in CML G0 cells is LepR, but its role in contributing to the myeloid expansion and other abnormalities is unknown. It was hoped that LepR might serve as a therapeutic target, but leptin had no stimulatory or inhibitory effect on either normal or CML G0 cells, our attempts to make a specific LepR antibody were unsuccessful, and no other potentially targetable over-expressed surface antigens were identified.
Gene Expression Differences between Enriched Normal and Chronic Myelogenous Leukemia Quiescent Stem/Progenitor Cells and Correlations with Biological Abnormalities.
Specimen part, Disease, Disease stage
View SamplesPancreatic ductal adenocarcinoma (PDA) carries a dismal prognosis and current treatments are only modestly effective. We present evidence that this variation is caused in part by recurrent, pervasive molecular differences between tumors. mRNA expression profiles measured using microdissected PDA clinical samples reveal three dominant subtypes of disease; epithelial, mesenchymal and acinar-like. The classical and quasi-mesenchymal subtypes are observed in human and mouse PDA cell lines. Importantly, responses to cytotoxics and KRAS depletion in human PDA cell lines differ substantially between subtypes, and in opposing directions. Integrated genomics implicate and functional studies support overexpression of the trancription factor GATA6 as a driver of the epithelial subtype. These results provide a molecular framework for evaluating the prospects of personalized treatment in PDA.
Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy.
Specimen part, Cell line
View SamplesThis series represents expression profiles of 34 non-seminoma germ cell tumors (NSGCTs) from patients who received cisplatin based chemotherarpy for treatment of their disease for whom full clinical follow-up information was available. These specimens were used as a validation set to test outcome prediction models using a subset of previously profiled GCT specimens (see GEO accession #GSE3218).
Identification and validation of a gene expression signature that predicts outcome in adult men with germ cell tumors.
No sample metadata fields
View SamplesSubpopulations of MDA-MB-231 that exhibit different metastatic tropisms when injected into immuno-deficient mice. Also, a cohort of primary breast cancers surgically resected at the Memorial Sloan-Kettering Cancer Center (MSKCC).
Genes that mediate breast cancer metastasis to lung.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Recurrent epimutations activate gene body promoters in primary glioblastoma.
Sex, Disease stage
View Samples