The identification of HCC patients with different risks of recurrence by incorporating the status of clinicopathological features available at diagnosis and gene expression profiling associated with recurrence
Identification and validation of a novel gene signature associated with the recurrence of human hepatocellular carcinoma.
Sex, Age, Specimen part, Disease, Disease stage, Subject
View SamplesAberrant gene expression analysis between peripheral blood mononuclear cell (PBMC) samples from healthy individuals and patients with pancreatic carcinoma, gastric carcinoma and hepatocellular carcinoma (HCC) were identified using Affymetrix gene arrays.
A blood-based three-gene signature for the non-invasive detection of early human hepatocellular carcinoma.
Specimen part, Disease
View SamplesWe sequenced liver biopsy tissue from healthy, patients with NAFLD and patients with NASH Overall design: 3 patients either healthy, presenting with NAFLD or NASH
Preclinical Models for Studying NASH-Driven HCC: How Useful Are They?
Sex, Age, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of an interleukin 13-induced epigenetic signature in allergic airway inflammation.
Specimen part
View SamplesAsthma is a common chronic inflammatory airway condition with a strong genetic and inheritability component, as siblings and first-degree relatives of those with the disease are often affected.
Identification of an interleukin 13-induced epigenetic signature in allergic airway inflammation.
Specimen part
View SamplesTumor-associated macrophages (TAMs) have immunosuppressive capacity in mouse models of cancer. Here we show that the genetic deletion of the microRNA (miRNA)-processing enzyme DICER in TAMs broadly programs them to a CD11c+MRC1-/low M1-like immunostimulatory phenotype characterized by activated interferon-? (IFN-?)/STAT1/IRF signaling. M1-like TAM programming fostered the recruitment of cytotoxic T-cells (CTLs), including tumor-antigen-specific CTLs, inhibited tumor growth, and enhanced the efficacy of PD1 checkpoint blockade. Bioinformatics analysis of TAM transcriptomes identified a limited set of miRNAs putatively involved in TAM programming. Re-expression of Let-7 in Dicer-deficient TAMs was sufficient to partly rescue the M2-like (protumoral) TAM phenotype and abate tumor CTL infiltration. Targeted suppression of DICER activity in TAMs may, therefore, stimulate antitumor immunity and enhance the efficacy of cancer immunotherapy. Overall design: To explore the role of DICER in the development, activation and immunological functions of TAMs, we crossed homozygous LysM-Cre (Clausen et al., 1999) with Dicerlox/lox (Harfe et al., 2005) mice to obtain mice with myeloid-cell-specific Dicer1 gene deletion (LysM-Cre;Dicer–/–, referred to as D–/–). These mice were then backcrossed to LysM-Cre to obtain the control LysM-Cre; Dicer+/+ mice (referred to as D+/+). Both LysM-Cre and Dicerlox/lox mutations were always homozygous in our experiment. We then inoculated Lewis lung carcinoma (LLC) cells subcutaneously (s.c.) in D–/– and control D+/+ mice. Once the tumors were established, we isolated by fluorescence-activated cell sorting (FACS) tumor-associated macrophages (F4/80+ cells).
Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity.
Specimen part, Subject
View SamplesEpigenetic modifications have emerged as central players in the coordination of gene expression networks during cardiac development. While several studies have investigated the role of histone modifications during heart development, relatively little is known about the role of DNA methylation. The purpose of the current study was to determine whether DNA methylation plays an important role in guiding transcriptional changes during the neonatal period, which is an important developmental window for cardiac maturation and cardiomyocyte cell cycle arrest. We used methyl binding domain protein sequencing (MBD-seq) and mRNA-seq to profile DNA methyation and gene expression respectively in neonatal hearts at P1 and P14 stages. Thousands of differentially methylated regions (DMRs) were identified between P1 and P14, the vast majority of which were hypermethylated. Gene ontology analysis revealed that these hypermethylated genes were associated with transcriptional regulation of important developmental signaling pathways, including Hedgehog, BMP, TGF beta, FGF and Wnt/b-catenin signaling. A significant enrichment for myogenic transcription factors and Smad2/3/4 binding sites was also noted among differentially methylated peaks at P14. This study provides novel evidence for widespread alterations in DNA methylation during post-natal heart maturation and suggests that DNA methylation plays an important role in cardiomyocyte cell cycle arrest during the neonatal period. Overall design: mRNA-seq to profile gene expression in neonatal hearts at P1 and P14 stages (post-natal day 1 and 14 respectively) in three biological replicates.
Dynamic changes in the cardiac methylome during postnatal development.
No sample metadata fields
View SamplesWe defined the C/EBPa signature characterized by a set of genes which are upregulated upon C/EBPa activation. In order to identify the C/EBPa signature, we performed microarray gene expression analysis of K562 cells stably expressing p42-C/EBPa-ER after activating the C/EBPa construct to translocate to the nucleus for 6 hours with beta-estradiol.
The gene signature in CCAAT-enhancer-binding protein α dysfunctional acute myeloid leukemia predicts responsiveness to histone deacetylase inhibitors.
Cell line, Treatment
View SamplesThe generation of induced pluripotent stem cells (iPSCs) often results in aberrant silencing of the imprinted Dlk1-Dio3 gene cluster, which compromises their ability to generate entirely iPSC-derived mice (all-iPSC mice). Here, we show that reprogramming in the presence of ascorbic acid attenuates hypermethylation of Dlk1-Dio3 by enabling a chromatin configuration at its imprint control region that interferes with abnormal binding of the DNA methyltransferase Dnmt3a. This approach allowed us to generate adult all-iPSC mice from mature B cells, which have thus far failed to support the development of exclusively iPSC-derived postnatal mice. Our data demonstrate that factor-mediated reprogramming can endow a defined, terminally differentiated cell type with a developmental potential equivalent to that of embryonic stem cells. More generally, these findings indicate that the choice of culture conditions used for transcription factor-mediated reprogramming can strongly influence the epigenetic and biological properties of resultant iPSCs.
Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells.
Specimen part, Treatment
View SamplesThe pituitary tumor-transforming gene (PTTG1) is a recently discovered oncogene implicated in the malignant progression of a number of neoplasms. It has been shown to drive both endocrine and non-endocrine malignancies, but has not yet been studied in the context of renal cell carcinoma (RCC). Clear cell RCC (ccRCC) is cytogenetically characterized by deletion of chromosome 3p, harboring the von-Hippel Lindau tumor suppressor gene, and amplification of chromosome 5q. The significance of copy number gain of chromosome 5 is not clear, but is presumed to be the location of oncogenes that influence ccRCC development or progression. The PTTG1 oncogene maps to chromosome 5q, and here we show that PTTG1 is amplified in clear cell RCC, is overexpressed in tumor tissue relative to adjacent normal kidney, and expression is associated with high grade, high stage, and poor prognosis. Furthermore, we establish a functional role for PTTG1 in ccRCC tumorigenesis and progression. PTTG1 ablation reduces both the tumorigenic ability of ccRCC cells in vitro and in vivo and the invasive ability of these cells in vitro. An analysis of genes whose transcription is regulated by PTTG1 was supportive of an association with invasive and metastatic disease. PTTG1-dependent expression of the Rho-GEF ECT2, another proto-oncogene, is observed in a number of ccRCC cell lines, and ECT2 expression correlates with PTTG1 expression, high stage, high grade, and poor prognosis ccRCC. As GEF's have been promoted as potential drug targets for targeted cancer therapeutics, the relationship between the PTTG1 and ECT2 oncogenes may be able to be exploited for the treatment of this disease.
Expression of the PTTG1 oncogene is associated with aggressive clear cell renal cell carcinoma.
Specimen part, Cell line
View Samples