In order to address the progression, metastasis, and clinical heterogeneity of renal cell cancer (RCC), transcriptional profiling with oligonucleotide microarrays (22,283 genes) was done on 49 RCC tumors, 20 non-RCC renal tumors, and 23 normal kidney samples. Samples were clustered based on gene expression profiles and specific gene sets for each renal tumor type were identified. Gene expression was correlated to disease progression and a metastasis gene signature was derived. Gene signatures were identified for each tumor type with 100% accuracy. Differentially expressed genes during early tumor formation and tumor progression to metastatic RCC were found. Subsets of these genes code for secreted proteins and membrane receptors and are both potential therapeutic or diagnostic targets. A gene pattern ("metastatic signature") derived from primary tumors was very accurate in classifying tumors with and without metastases at the time of surgery. A previously described "global" metastatic signature derived by another group from various non-RCC tumors was validated in RCC. Unlike previous studies, we describe highly accurate and externally validated gene signatures for RCC subtypes and other renal tumors. Interestingly, the gene expression of primary tumors provides us information about the metastatic status in the respective patients and has the potential, if prospectively validated, to enrich the armamentarium of diagnostic tests in RCC. We validated in RCC, for the first time, a previously described metastatic signature and further showed the feasibility of applying a gene signature across different microarray platforms. Transcriptional profiling allows a better appreciation of the molecular and clinical heterogeneity in RCC.
Gene signatures of progression and metastasis in renal cell cancer.
Specimen part
View SamplesLateral root initiation was used as a model system to study the mechanisms behind auxin-induced cell division. Genome-wide transcriptional changes were monitored during the early steps of lateral root initiation. Inclusion of the dominant auxin signaling mutant solitary root1 (slr1) identified genes involved in lateral root initiation that act downstream of the AUX/IAA signaling pathway. Interestingly, key components of the cell cycle machinery were strongly defective in slr1, suggesting a direct link between AUX/IAA signaling and core cell cycle regulation. However, induction of the cell cycle in the mutant background by overexpression of the D-type cyclin (CYCD3;1) was able to trigger complete rounds of cell division in the pericycle that did not result in lateral root formation. Therefore, lateral root initiation can only take place when cell cycle activation is accompanied by cell fate respecification of pericycle cells. The microarray data also yielded evidence for the existence of both negative and positive feedback mechanisms that regulate auxin homeostasis and signal transduction in the pericycle, thereby fine-tuning the process of lateral root initiation.
Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The deafness gene DFNA5 induces programmed cell death through mitochondria and MAPK-related pathways.
Specimen part, Cell line
View SamplesWe have used RNA-seq to identify transcripts, including splice variants, expressed in human islets of Langerhans under control condition or following exposure to the pro-inflammatory cytokines interleukin-1ß (IL-1ß) and interferon-? (IFN-?). A total of 29,776 transcripts were identified as expressed in human islets. Expression of around 20% of these transcripts was modified by pro-inflammatory cytokines, including apoptosis- and inflammation-related genes. Chemokines were among the transcripts most modified by cytokines. Interestingly, 35% of the genes expressed in human islets undergo alternative splicing as annotated in RefSeq, and cytokines caused substantial changes in spliced transcripts. Nova1, previously considered a brain-specific regulator of mRNA splicing, is expressed in islets. 25/41 of the candidate genes for type 1 diabetes are expressed in islets, and cytokines modified expression of several of these transcripts. Overall design: 5 human islet of Langerhans preparations examined under 2 conditions (control and cytokine treatment)
Differential cell autonomous responses determine the outcome of coxsackievirus infections in murine pancreatic α and β cells.
Specimen part, Subject
View SamplesThe root cap-specific conversion of the auxin precursor indole-3-butyric acid (IBA) into the main auxin indole-3-acetic acid (IAA) generates a local auxin source which subsequently modulates both the periodicity and intensity of auxin response oscillations in the root tip of Arabidopsis, and consequently fine-tunes the spatiotemporal patterning of lateral roots. To explore downstream components of this signaling process, we investigated the early transcriptional regulations happening in the root tip during IBA-to-IAA conversion in Col-0 and ibr1 ibr3 ibr10 triple mutant after 6 hours of IBA treatment.
Root Cap-Derived Auxin Pre-patterns the Longitudinal Axis of the Arabidopsis Root.
Age, Specimen part, Treatment
View SamplesGlucocorticoids (GCs) are commonly used to treat patients suffering from lymphoid malignancies i.e. leukemia and multiple myeloma. Although GCs are known to be strong inducers of apoptosis in lymphoid cells, the molecular determinants of GC therapy resistance are poorly understood. Although GC treatment triggers important changes in gene expression, few studies have addressed the regulatory role of small regulatory microRNAs (miRNAs) in GC therapy response. Only recently, aberrant microRNA expression has been linked to the development of haematological malignancies and microRNAs have become master regulators of drug resistance. We identified GC inducible mRNA and microRNA transcription profiles in GC sensitive MM1S as compared to GC resistant MM1R cells. Transcriptome analysis revealed that GCs regulate multiple genes involved in cell cycle control, cell organization and cell death in MM1S, which remain unaffected in MM1R cells. Correspondingly, GCs selectively trigger cell death in MM1S but not in MM1R. Out of 32 microRNAs responsive to GC in MM1S cells but not in MM1R cells, mir-150 was identified as the most persistent GC responsive microRNA. Furthermore, Ingenuity Pathways Analysis (IPA) revealed that ectopic transfection of a synthetic mir-150 mimics GC therapy response in MM1S cells, associated with selective changes in mRNA levels of typical GR transactivated and transrepressed target genes. Although mir-150 largely mirrors GC responsive changes in gene expression of the transcription factor Myb, GR chaperone FKBP5, cell cycle modulator proteins (IL23A, SKP2, CDKN1A), chemokine signaling proteins (CXCR4, CX3CR1, CCL3) and mTOR/UPR stress related proteins (DDIT4, TXNIP), we also observed mir-150 selective effects on transcription factors (NR3C2 (MR), Myb, Fos, Jun, C/EBP-beta, IRF4, NFE2L1, ATF3, ATF4,), chaperone molecules HSPA8, HSP90AB1), the sodium channel SCNN1G and UPR stress proteins (TRIB3, DDIT3). Remarkably, mir-150 overexpression was not able to overcome GC therapy resistance, since we could not detect GC like effects of mir-150 in GR (NR3C1) deficient MM1R cells. Altogether GC-inducible mir-150 adds a novel complex layer of regulation for fine tuning GC specific therapeutic responses in multiple myeloma.
Ectopic microRNA-150-5p transcription sensitizes glucocorticoid therapy response in MM1S multiple myeloma cells but fails to overcome hormone therapy resistance in MM1R cells.
Cell line, Treatment
View SamplesFunctional analyses of MADS-box transcription factors in plants have unraveled their role in major developmental programs (e.g; flowering and floral organ identity), in stress-related developmental processes such as abscission, fruit ripening and senescence and the role of some of them in stress response regulation was reported. The aim of this study was to decipher the genes that are under the control of the OsMADS26 transcription factor in rice in standard or osmotic stress condition.
OsMADS26 Negatively Regulates Resistance to Pathogens and Drought Tolerance in Rice.
Age, Specimen part
View SamplesCoordination of cell division and pattern formation is central to tissue and organ development, and is particularly important in plants where walls prevent cell migration. Auxin and cytokinin are both critical for division and patterning, but it is unknown how these hormones converge to control tissue development. Here, we identify a genetic network that reinforces an early embryonic bias in auxin distribution to create a local, non-responding cytokinin source within the root vascular tissue. We provide experimental and theoretical evidence that these cells act as a local tissue organizer by positioning the domain of oriented cell divisions. We further demonstrate that the auxin-cytokinin interaction acts as a spatial incoherent feed forward loop, which is essential to generate distinct hormonal response zones, thus establishing a stable pattern within a growing vascular tissue.
Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis.
Specimen part, Treatment
View SamplesThe acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the study of lateral root development. Here we describe a small-molecule screen in Arabidopsis thaliana that identified naxillin as what is to our knowledge the first non-auxin-like molecule that promotes root branching. By using naxillin as a chemical tool, we identified a new function for root cap-specific conversion of the auxin precursor indole-3-butyric acid into the active auxin indole-3-acetic acid and uncovered the involvement of the root cap in root branching. Delivery of an auxin precursor in peripheral tissues such as the root cap might represent an important mechanism shaping root architecture. To further explore the specificity of naxillin for lateral root development, we compared the early effects of naxillin at the transcriptome level with NAA (1-Naphthaleneacetic acid) in roots of 3-day-old seedlings after 2-h and 6-h treatment.
A role for the root cap in root branching revealed by the non-auxin probe naxillin.
Age, Specimen part, Treatment
View SamplesSomatic ribosomal protein defects have recently been described in cancer, yet their impact on cellular transcription and translation remain poorly understood. Here we integrated mRNA sequencing, ribosome footprinting, polysomal RNA seq and quantitative mass spectrometry datasets obtained from an isogenic mouse lymphoid cell model in order to study the T-cell acute lymphoblastic leukemia (T-ALL) associated R98S mutation in ribosomal protein L10 (RPL10 R98S). RPL10 R98S induced changes in protein levels were to a much larger extent caused by transcriptional then translational changes and RPL10 R98S cells showed a gene signature corresponding to deregulation of hematopoietic transcription factors. Phosphoserine phosphatase (PSPH), a key enzyme in serine biosynthesis, displayed elevated transcription and translation and was one of the proteins showing the strongest upregulation in RPL10 R98S cells. Increased Psph protein levels were confirmed in RPL10 R98S engineered JURKAT cells and in hematopoietic cell cultures derived from Rpl10 R98S knock-in mice. Moreover, elevated serine and glycine biosynthesis in RPL10 R98S cells was supported by metabolic flux analyses. Analysis of PSPH expression levels in T-ALL patient samples revealed that PSPH upregulation is a generalized phenomenon in this disease, associated with elevated circulating serine and glycine levels. Addition of serine and glycine enhanced survival of stromal and myeloid cells, suggesting supportive effects on the hematopoietic niche. Finally, reduction of PSPH expression levels in T-ALL cell lines suppressed their in vitro proliferation and their capacity to expand in T-ALL xenograft models. In conclusion, transcriptome, translatome and proteome analysis of the RPL10 R98S mutation identified RPL10 R98S driven induction of cellular serine biosynthesis. Whereas serine metabolism has been implicated in cancer via PHGDH amplification, this is the first report supporting dependence of ALL cells on the serine biosynthesis enzyme PSPH. Overall design: 3 biological replicates for each condition (RPL10 R98S, RPL10 WT)
Translatome analysis reveals altered serine and glycine metabolism in T-cell acute lymphoblastic leukemia cells.
Specimen part, Subject
View Samples