MicroRNAs (miRNAs) are important regulators of cell fate decisions in immune responses. They act by coordinate repression of multiple target genes, a property that we exploited to uncover regulatory networks that govern T helper-2 (Th2) cells. A functional screen of individual miRNAs in primary T cells uncovered multiple miRNAs that inhibited Th2 cell differentiation. Among these were miR-24 and miR-27, miRNAs coexpressed from two genomic clusters, which each functioned independently to limit interleukin-4 (IL-4) production. Mice lacking both clusters in T cells displayed increased Th2 cell responses and tissue pathology in a mouse model of asthma. Gene expression and pathway analyses placed miR-27 upstream of genes known to regulate Th2 cells. They also identified targets not previously associated with Th2 cell biology which regulated IL-4 production in unbiased functional testing. Thus, elucidating the biological function and target repertoire of miR-24 and miR-27 reveals regulators of Th2 cell biology. Overall design: Gene expression analysis of miRNA-deficient mouse CD4+ T cells transfected with miRNA mimics twice over a 5 day in vitro culture in the presence of low amounts of exogenous IL-4 (10U/ml). Cells transfected with either miR-23, miR-24 or miR-27 were compared to cells transfected with a control mimic. Data are from at least biologic triplicates.
MicroRNAs 24 and 27 Suppress Allergic Inflammation and Target a Network of Regulators of T Helper 2 Cell-Associated Cytokine Production.
Cell line, Subject
View SamplesTo examine patterns of gene expression in ankle synovial fluid cells and peripheral blood leukocytes during serum transferred arthritis.
Deficiency of CXCR2, but not other chemokine receptors, attenuates autoantibody-mediated arthritis in a murine model.
Sex, Age, Time
View SamplesThe goal of the study was to compare gene expression of P0 wild-type and P0 Satb2-/- cortices. Total RNAs were isolated from P0 cortices dissected from wild-type and Satb2-/- mice (n=3 for each genotype), following Qiagen RNAeasy kit instruction.Sequence libraries were made following Illumina RNA TruSeq library preparation guide.The libaries were pair-end sequenced (50nt per end). Differentially expressed genes were identified by DESEQ. Overall design: Total RNAs were isolated from P0 cortices (3 control and 3 mutants), and sequenced on Illumina Genome Analyzer
Mutual regulation between Satb2 and Fezf2 promotes subcerebral projection neuron identity in the developing cerebral cortex.
No sample metadata fields
View SamplesKRAS mutations occur in approximately 25% of non-small cell lung cancer (NSCLC). They account for the therapy resistance to EGFR inhibitors and are suggested to be difficult to target by specific drugs. Therefore, new therapies for KRAS mutant NSCLC are urgently needed. The histone H3K4 and H3K9 di/mono-demethylase KDM1A is a key epigenetic writer, aberrantly upregulated in many cancer types, including NSCLC. In order to understand the functional role of KDM1A in the progression of lung adenocarcinoma, KDM1A expression profiles were analysed in tissue microarrays (TMAs) including 182 lung adenocarcinoma. KDM1A expression correlated with high grade and metastasized tumor. To investigate the impact of KDM1A in lung adenocarcinoma development, we used the KRAS mutated A549 cell line to establish a shRNA-mediated stable KDM1A knockdown cell clone. Unexpectedly, KDM1A knockdown had only a slight effect on retardation of cell growth. However, cell invasion and self-renewal capability was significantly decreased by KDM1A inhibition. KDM1A knockdown in A549 cell resulted in a dramatic change in the transcriptome profile as determined by RNA-Seq. Interestingly, genes involved in the KRAS signature and lung epithelial marker genes were significantly affected upon KDM1A knockdown. Ingenuity pathway analysis also suggested that the alternative integrin ß3-KRAS signaling axis, which is involved in stem cell like properties, is abrogated upon KDM1A knockdown. Indeed, Integrin ß3 and its non-canonical ligand galectin-3 were strongly downregulated and their downstream NF-?B activity was decreased upon KDM1A knockdown. Finally, correlation of KDM1A to the Integrin ß3 level was validated in TMAs. Overall design: Determining the role of KDM1A in A549 cells, mRNA profiles of control and knockdown samples of A549 cells, generated by deep sequencing, in triplicate, using Illumina HiSeq 2500.
LSD1 modulates the non-canonical integrin β3 signaling pathway in non-small cell lung carcinoma cells.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Epigenomics and transcriptomics of systemic sclerosis CD4+ T cells reveal long-range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci.
Sex, Subject
View SamplesEpigenomic and transcriptomic analysis of Systemic Sclerosis CD4+ T cells reveals long range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci range dysregulation of key inflammatory pathways mediated by disease-associated
Epigenomics and transcriptomics of systemic sclerosis CD4+ T cells reveal long-range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci.
Sex, Subject
View SamplesTo elucidate mechanisms of cancer progression, we generated inducible human neoplasia in 3-dimensionally intact epithelial tissue. Gene expression profiling of both epithelia and stroma at specific time points during tumor progression revealed sequential enrichment of genes mediating discrete biologic functions in each tissue compartment. A core cancer progression signature was distilled using the increased signaling specificity of downstream oncogene effectors and subjected to network modeling. Network topology predicted that tumor development depends upon specific ECM-interacting network hubs. Blockade of one such hub, the b1 integrin subunit, disrupted network gene expression and attenuated tumorigenesis in vivo. Thus, integrating network modeling and temporal gene expression analysis of inducible human neoplasia provides an approach to prioritize and characterize genes functioning in cancer progression.
Modeling inducible human tissue neoplasia identifies an extracellular matrix interaction network involved in cancer progression.
Specimen part
View SamplesThe nematode Caenorhabditis elegans is an important model for studies of germ cell biology, including specification as sperm or oocyte, the meiotic cell cycle and gamete differentiation. Fundamental to those studies is a genome-level knowledge of the germline transcriptome. Here we use RNA-Seq to identify genes expressed in isolated XX gonads, which are roughly 95% germline and 5% somatic gonadal tissue. We generate data from mutants making either sperm [fem-3(q96)] or oocytes (fog-2), both grown at 22°C. Our dataset identifies a total of 10,754 mRNAs in the polyadenylated transcriptome of XX gonads, with 1,723 enriched in spermatogenic gonads, 2,869 enriched in oogenic gonads and the remaining 6,274 not enriched in either. These spermatogenic, oogenic and gender-neutral gene datasets compare well with those of earlier studies, but double the number of genes identified. We also query our RNA-Seq data for differential exon usage and find 351 mRNAs with sex-specific isoforms. We suggest that this new dataset will prove useful for studies focusing on C. elegans germ cell biology. Overall design: Comparison of spermatogenic vs oogenic transcriptomes
A new dataset of spermatogenic vs. oogenic transcriptomes in the nematode Caenorhabditis elegans.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Network pharmacology of JAK inhibitors.
Sex, Age, Specimen part, Compound
View SamplesSmall molecule inhibitors of JAK kinases have shown clinical effcacy in the treatment of certain autoimmune diseases. While these are known to block upstream JAK signalling events, their broader impact on the transcriptional footprint in immunocytes are unknown. Here we explore the effects of pan- and isoform-specific JAK blockade on the immuno-genomic network by genomic profiling.
Network pharmacology of JAK inhibitors.
Sex, Age, Specimen part, Compound
View Samples