To understand the underlying cause for the observed apoptosis in E2f1-3 deficient myeloid cells. We compared gene expression profiles of Cd11b+ sorted myeloid cells isolated from bone marrow of control (E2F1-/- ) and experimental (Mxcre;E2F1-/-2-/-3f/f ) mice.
E2f1-3 are critical for myeloid development.
Age, Specimen part
View SamplesBackground. Most colorectal cancers (CRC) arise in a progression through adenoma to carcinoma phenotypes as a consequence of altered genetic information. Clinical progression of CRC may occur in parallel with distinctive signaling alterations. We designed multidirectional analyses integrating microarray-based data with biostatistics and bioinformatics to elucidate the signaling and metabolic alterations underlying CRC development in the adenoma-carcinoma sequence. Methodology/Principal Findings. Studies were performed on normal mucosa, adenoma, and CRC samples obtained during surgery or colonoscopy. Collections of cryostat sections prepared from the tissue samples were evaluated by a pathologist to control the relative cell type content. RNA was isolated from 105 macro- and 40 microdissected specimens. The measurements were done using Affymetrix GeneChip HG-U133plus2, and probe set data were generated using two normalization algorithms: MAS5 and GCRMA with LVS. The data were evaluated using pair-wise comparisons and data decomposition into SVD modes. The method selected for the functional analysis used the Kolmogorov-Smirnov test. Based on a consensus of the results obtained by two tissue handling procedures, two normalization algorithms, and two probe set sorting criteria, we identified six KEGG signaling and metabolic pathways (cell cycle, DNA replication, p53 signaling pathway, purine metabolism, pyrimidine metabolism, and RNA polymerase) that are significantly altered in both macro- and microdissected tumor samples compared to normal colon. On the other hand, pathways altered between benign and malignant tumors were identified only in the macrodissected tissues. Conclusion/Significance. Multidirectional analyses of microarray data allow the identification of essential signaling alterations underlying CRC development. Although the proposed strategy is computationally complex and laborintensive, it may reduce the number of false results.
Modeling oncogenic signaling in colon tumors by multidirectional analyses of microarray data directed for maximization of analytical reliability.
Sex, Age, Specimen part
View SamplesWe examined the gene expression profiles in ex vivo human CD4+ and CD8+ T cells from untreated HIV-infected individuals at different clinical stages and rates of disease progression. Profiles of pure CD4+ and CD8+ T cells subsets from HIV-infected nonprogressors who controlled viremia were indistinguishable from HIV-uninfected individuals. Similarly, no gene clusters could distinguish T cells from individuals with early from chronic progressive HIV infection, whereas differences were observed between uninfected or nonprogressors versus early or chronic progressors. In early/chronic HIV infection, three characteristic gene expression signatures were observed: (1) CD4+ and CD8+ T cells showed increased expression of interferon stimulated genes (ISGs). However, some ISGs including CXCL9, CXCL10, and CXCL11, and the IL15R in both CD4+ and CD8+ T cells and the anti-HIV ISG APOBEC3G in CD4+ T cells, were not upregulated. (2) CD4+ and CD8+ T cells showed a cluster similar to that observed in thymocytes, and (3) more genes were differentially regulated in CD8+ T cells than in CD4+ T cells, including a cluster of genes downregulated exclusively in CD8+ T cells. In conclusion, HIV infection induces a persistent T cell transcriptional profile, early in infection, characterized by a dramatic but potentially aberrant interferon response, and a profile suggesting an active thymic output.
Distinct transcriptional profiles in ex vivo CD4+ and CD8+ T cells are established early in human immunodeficiency virus type 1 infection and are characterized by a chronic interferon response as well as extensive transcriptional changes in CD8+ T cells.
No sample metadata fields
View SamplesGenetic deletion of Nfatc1 in mice results in profound osteoclast-poor osteopetrosis, a high bone mass state caused by a lack of osteoclast activity. We hypothesized that the family of NFATc1 regulated transcripts in the osteoclast would be enriched for genes associated with osteoclast function. We used microarrays profile gene expression in wild-type and NFATc1-deficient osteoclasts generated in vitro to identify NFATc1-dependent transcripts in osteoclasts.
NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
DNA methylation status is more reliable than gene expression at detecting cancer in prostate biopsy.
No sample metadata fields
View SamplesBarrett's esophagus is characterized by the replacement of squamous epithelium with specialized intestinal metaplastic mucosa. The exact mechanisms of initiation and development of Barrett's metaplasia remain unknown, but a hypothesis of successful adaptation against noxious reflux components has been proposed. To search for the repertoire of adaptation mechanisms of Barrett's metaplasia, we employed high-throughput functional genomic and proteomic methods that defined the molecular background of metaplastic mucosa resistance to reflux. Transcriptional profiling was established for 23 pairs of esophageal squamous epithelium and Barrett's metaplasia tissue samples using Affymetrix U133A 2.0 GeneChips and validated by quantitative real-time polymerase chain reaction. Differences in protein composition were assessed by electrophoretic and mass-spectrometry-based methods. Among 2,822 genes differentially expressed between Barrett's metaplasia and squamous epithelium, we observed significantly overexpressed metaplastic mucosa genes that encode cytokines and growth factors, constituents of extracellular matrix, basement membrane and tight junctions, and proteins involved in prostaglandin and phosphoinositol metabolism, nitric oxide production, and bioenergetics. Their expression likely reflects defense and repair responses of metaplastic mucosa, whereas overexpression of genes encoding heat shock proteins and several protein kinases in squamous epithelium may reflect lower resistance of normal esophageal epithelium than Barrett's metaplasia to reflux components. Despite the methodological and interpretative difficulties in data analyses discussed in this paper, our studies confirm that Barrett's metaplasia may be regarded as a specific microevolution allowing for accumulation of mucosal morphological and physiological changes that better protect against reflux injury.
Molecular defense mechanisms of Barrett's metaplasia estimated by an integrative genomics.
Sex, Age
View SamplesFoxJ1 dependent gene expression is required for establishment of ependymal cells in the postnatal brain. This data set compares gene expression profiles of wildtype and FoxJ1 null microdissected dissected tissues at multiple postnatal time points.
FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain.
Specimen part
View SamplesMacrophages have been implicated in breast cancer progression and metastasis, but relatively little is known about the genes and pathways that are involved. Using a conditional allele of Ets2 in the mouse, we have identified Ets2 as a critical gene in tumor associated macrophages (TAMs) that specifically promotes mammary tumor metastasis. Loss of Ets2 in TAMs decreased the frequency and size of lung metastases without impacting primary tumor burden. Expression profiling of isolated tumor macrophages established that Ets2 deficiency resulted in the de-repression of a defined set of anti-angiogenic genes.
An ets2-driven transcriptional program in tumor-associated macrophages promotes tumor metastasis.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Does soft really matter? Differentiation of induced pluripotent stem cells into mesenchymal stromal cells is not influenced by soft hydrogels.
Specimen part, Subject
View SamplesInduced pluripotent stem cells (iPSCs) can be differentiated toward mesenchymal stromal cells (MSCs), but at least on epigenetic level this transition remains incomplete with the current culture conditions. Hydrogels provide a more physiologic three-dimensional environment for in vitro cell culture than conventional tissue culture plastic (TCP). In this study, we followed the hypothesis that growth and differentiation of primary MSCs and of iPSC-derived MSCs (iMSCs) can be enhanced on hydrogels. To this end, we used a hydrogel made of human platelet lysate (hPL). MSCs were effectively cultured on and inside hPL-gel and demonstrated more structured deposition of extracellular matrix (ECM) components than TCP. Furthermore, hPL-gel supported differentiation of iPSCs toward MSCs. Unexpectedly, the differentiation process seemed to be hardly affected by the substrate: iMSCs generated either on TCP or hPL-gel did not reveal differences in morphology, immunophenotype, or differentiation potential. Moreover, global gene expression and DNA-methylation profiles were almost identical in iMSCs generated on TCP or hPL-gel. Our results indicate that matrix elasticity is less crucial for directed lineage-specific differentiation toward MSCs than expected.
Does soft really matter? Differentiation of induced pluripotent stem cells into mesenchymal stromal cells is not influenced by soft hydrogels.
Specimen part, Subject
View Samples