Pericytes derived from skin dermis can substantially enhance the short-term tissue-regenerative capacity of human epidermal cells already committed to differentiation; they also display both phenotypic and functional properties of mesenchymal stem cells. In this microarray analysis, we compared the gene expression profile of dermal pericytes to that of the remaining dermal cells of neonatal human foreskin.
A role for pericytes as microenvironmental regulators of human skin tissue regeneration.
Specimen part
View SamplesThe mechanisms of inflammation in acne are not well understood. This study performed in two separate patient populations focused on the activation of adaptive and innate immunity in early inflamed acne. Biopsies were collected from lesional and non-lesional skin of acne patients. Psoriasis patients and healthy volunteers were included in the study for comparison (not included in the records). Using Affymetrix Genechips, we observed significant elevation of the signature cytokines of the Th17 lineage in acne lesions compared to non-lesional skin. The increased expression of IL-17 was confirmed with real-time qPCR (RT-PCR) in two separate patient populations. Cytokines involved in Th17 lineage differentiation (IL-1beta, IL-6, TGF-beta; IL23p19) were remarkably induced at the RNA level. In addition, pro-inflammatory cytokines (IL-8, TNF-), Th1 markers (IL12p40, CXCR3, T-bet, IFN-gamma), T regulatory cell markers (Foxp3, IL-10, TGF-) and antimicrobial peptides (S100A7, S100A9, LNC2, hBD2, hBD3, hCAP18) were induced. Importantly, immunohistochemistry revealed significantly increased numbers of IL-17A positive T cells and CD83 dendritic cells in the acne lesions. In summary our results demonstrate the presence of IL17A positive T cells and the activation of Th17-related cytokines in acne lesions, indicating that the Th17 pathway may play a pivotal role in the disease process, offering new targets of therapy.
IL-17/Th17 pathway is activated in acne lesions.
Specimen part
View SamplesTranscript profile of apices of 20 days-old Arabidopsis plants over expressing miR396b.
Repression of cell proliferation by miR319-regulated TCP4.
Age, Specimen part
View SamplesTranscript profile of 10 days-old seedlings over expressing miR396
Control of cell proliferation in Arabidopsis thaliana by microRNA miR396.
No sample metadata fields
View SamplesThe Growth Regulating Factors (GRFs) are plant specific transcription factors. They form complexes with GRF Interacting Factors (GIFs), a small family of transcriptional co-activators. In Arabidopsis thaliana, seven out of the nine GRFs are regulated by microRNA miR396. A detailed analysis of GRF3 revealed that a modified transgene, insensitive to the regulation of miR396, causes a strong increase in the number of cells in leaves, while an additional increase of GIF1 expression further enhances the number of cells synergistically. Genome-wide transcript profiling revealed that simultaneous increase of GRF3 and GIF1 levels causes additional effects in gene expression compared to either of the transgenes alone. We observed that GIF1 interacts in vivo with GRF3, as well as chromatin remodeling complexes, providing a mechanistic explanation for the additional activities of a GRF3-GIF1 complex. Interestingly, we found that the GRF system also regulates leaf longevity. Genetic and molecular analysis revealed that the functions of GRFs in leaf size and senescence can be uncoupled, demonstrating that the GRFs control different stages of leaf development. The results provide new insights into the functions of a complex regulatory network composed of microRNAs, transcription factors, and co-transcription factors.
Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity.
Specimen part
View SamplesAnalysis of gene expression in the meristematic zone of Arabidopsis roots overexpressing miR396
MicroRNA miR396 Regulates the Switch between Stem Cells and Transit-Amplifying Cells in Arabidopsis Roots.
Age, Specimen part
View SamplesWe used microarrays to identify markers predicting responder status in infliximab treatment in 19 rheumatoid arthritis and 20 Crohn's disease patients at week 0 and week 2 of treatment.
Peripheral blood derived gene panels predict response to infliximab in rheumatoid arthritis and Crohn's disease.
Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesDuring sexual dimorphism, the loss of one entire X chromosome in Drosophila males is achieved largely via a broad genome-wide aneuploid effect. Exploring how MSL proteins and two large non coding RNAs (roX1 and roX2) modulate trans-acting aneuploid effect for equality to females, we employ a system biology approach (microarray) to investigate the global aneuploid effect of maleless(mle) mutation by disrupting MSL binding. A large number of the genes (144) that encode a broad spectrum of cellular transport proteins and transcription factors are located in the autosomes of Drosophila melanogaster.
Drosophila maleless gene counteracts X global aneuploid effects in males.
No sample metadata fields
View SamplesNeutrophils are short-lived innate immune cells. Upon encountering appropriate stimuli, neutrophils generate and release neutrophil extracellular traps (NETs), primarily via NADPH oxidase (Nox)-dependent (~2 hours) or Nox-independent NETosis (~15-60 minutes). Ironically, DNA transcription in dying neutrophils remains an enigma. We hypothesized that transcriptional activation, regulated by NETosis-specific kinases, is important to drive the chromatin decondensation necessary for NETosis. For the first time, we show here that (i) the degree of NETosis corresponds to the degree of genome-wide transcription; (ii) kinase-specific transcriptional activation reflects transcriptional firing during different types of NETosis; and (iii) Transcriptomics suggests that NETosis could differentially regulate inflammation. Therefore, we propose that the initial steps of transcriptional firing, but neither transcription per se help to drive NETosis.
Transcriptional firing helps to drive NETosis.
Sex, Specimen part, Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Liver X receptors inhibit proliferation of human colorectal cancer cells and growth of intestinal tumors in mice.
Age, Specimen part
View Samples