RNA editing is a mutational mechanism that specifically alters the nucleotide content in sets of transcripts while leaving their cognate genomic blueprint intact. Editing has been detected from bulk RNA-seq data in thousands of distinct transcripts, but apparent editing rates can vary widely (from under 1% to almost 100%). These observed editing rates could result from approximately equal rates of editing within each individual cell in the bulk sample, or alternatively, editing estimates from a population of cells could reflect an average of distinct, biologically significant editing signatures that vary substantially between individual cells in the population. To distinguish between these two possibilities we have constructed a hierarchical Bayesian model which quantifies the variance of editing rates at specific sites using RNA-seq data from both single cells and a cognate bulk sample consisting of ~ 106 cells. The model was applied to data from murine bone-marrow derived macrophages and dendritic cells, and predicted high variance for specific edited sites in both cell types tested. We then 1 validated these predictions using targeted amplification of specific editable transcripts from individual macrophages. Our data demonstrate substantial variance in editing signatures between single cells, supporting the notion that RNA editing generates diversity within cellular populations. Such editing-mediated RNA-level sequence diversity could contribute to the functional heterogeneity apparent in cells of the innate immune system. Overall design: 26 samples were subjected to RNA-seq: 24 single WT macrophages, and 2 bulk samples (Apobec1 WT and KO macrophages), consisting of 500,000-1 million cells each.
RNA editing generates cellular subsets with diverse sequence within populations.
Specimen part, Cell line, Subject
View SamplesHow spatial chromosome organization influences genome integrity is still poorly understood. Here we show that DNA double-strand breaks (DSBs) mediated by topoisomerase 2 (TOP2) activities, are enriched at chromatin loop anchors with high transcriptional activity. Recurrent DSBs occur at CTCF/cohesin bound sites at the bases of chromatin loops and their frequency positively correlates with transcriptional output and directionality. The physiological relevance of this preferential positioning is indicated by the finding that genes recurrently translocating to drive leukemias, are highly transcribed and are enriched at loop anchors. These genes accumulate DSBs at recurrent hot spots that give rise to chromosomal fusions relying on the activity of both TOP2 isoforms and on transcriptional elongation. We propose that transcription and 3D chromosome folding jointly pose a threat to genomic stability, and are key contributors to the occurrence of genome rearrangements that drive cancer. Overall design: Nuclear RNA profiling in lymphoblastoid TK6 cell line
Spatial Chromosome Folding and Active Transcription Drive DNA Fragility and Formation of Oncogenic MLL Translocations.
Specimen part, Cell line, Subject
View SamplesThe many steps involved in the production of a mature mammalian mRNA are extensively coupled, and levels of both precursors and products can be measured using expression and genomic tiling microarrays. Different probes in these arrays targeting the same transcript often give different signals; then, precursor (nascent) RNA which is present transiently at low concentrations is difficult to detect.
A wave of nascent transcription on activated human genes.
No sample metadata fields
View SamplesAssessment of the putative differential gene expression profiles in high osmolality-treated bovine nucleus pulposus intervertebral disc cells for a short (5 h) and a long (24 h) time period. Identification of novel genes up- or down-regulated as an early or a late response to hyperosmotic stress.
Deficiency in the α1 subunit of Na+/K+-ATPase enhances the anti-proliferative effect of high osmolality in nucleus pulposus intervertebral disc cells.
Specimen part
View SamplesThe alarmins myeloid-related protein (MRP) 8 and MRP14 are the dominant cytoplasmic proteins in phagocytes. After release by activated phagocytes extracellular MRP8/MRP14 complexes promote inflammation in many diseases, including infections, allergies, autoimmune diseases, rheumatoid arthritis or inflammatory bowel disease. As receptors for the pro-inflammatory effects of human MRP8, the active component of the MRP8/MRP14-complex, Toll-like receptor (TLR) 4 and the multi-ligand receptor of advanced glycation end products (RAGE) are controversial discussed. Using a comparative bioinformatics analysis between genome-wide response patterns of monocytes to MRP8, endotoxin and different cytokines we demonstrated a dominant role of TLR4 during MRP8-mediated phagocyte activation. The relevance of this signaling pathway could be confirmed in independent cell models for TLR4 and RAGE dependent signaling in mouse and man. In addition to well-known proinflammatory functions of MRP8 our systems biology approach unraveled a novel anti-apoptotic effect of MRP8 on monocytes which was confirmed in independent functional experiments. Our data define the dominance of the TLR4-MRP8 axis in activation of human phagocytes which represents a novel attractive target for modulation of overwhelming innate immune responses.
Transcriptome assessment reveals a dominant role for TLR4 in the activation of human monocytes by the alarmin MRP8.
Specimen part, Treatment
View SamplesThe metabolic syndrome (MetS) is characterized by the presence of metabolic abnormalities that include abdominal obesity, dyslipidemia, hypertension, increased blood glucose/insulin resistance, hypertriglyceridemia and increased risk for cardiovascular disease (CVD). The ApoE*3Leiden.human Cholesteryl Ester Transfer Protein (ApoE3L.CETP) mouse model manifests several features of the MetS upon high fat diet (HFD) feeding. Moreover, the physiological changes in the white adipose tissue (WAT) contribute to MetS comorbidities. The aim of this study was to identify transcriptomic signatures in the gonadal WAT of ApoE3L.CETP mice in discrete stages of diet-induced MetS.
Transcriptome analysis of the adipose tissue in a mouse model of metabolic syndrome identifies gene signatures related to disease pathogenesis.
Sex, Age, Specimen part
View SamplesWe generated de novo induced pluripotent stem cells (iPSCs) from two Parkinson’s Disease patients (PD) harboring the p.A53T mutation. iPSC-derived mutant neurons displayed disease-relevant phenotypes at basal conditions, including protein aggregation, compromised neuritic outgrowth and contorted axons with swollen varicosities containing aSyn and tau. We have performed RNA Sequencing (RNA-Seq) of neurons from PD patient and control samples. RNA sequencing has also been performed to neurons derived from HUES samples subjected to the same differentiation protocol as reference. Overall design: We have performed RNA Sequencing (RNA-Seq) in neurons PD and control samples (two clones from each individual), along with HUES-derived neurons.
Defective synaptic connectivity and axonal neuropathology in a human iPSC-based model of familial Parkinson's disease.
Specimen part, Subject
View SamplesWe have ablated TAF10 in the erythroid compartment only by crossing the TAF10lox mice with the EpoR-Cre mice and we have studied the development of the erythroid cells in vivo. TAF10 ablation led to embryonic death at E13.5 while at E12.5 there was a clear developmental defect which was reflected in the transcriptional profile of the fetal liver cells. Gata1-target genes were mostly affected and were responsible for the lethal phenotype. Overall design: mRNA from E12.5 fetal livers of TAF10lox/KO:EpoR-Cre+/- (TAF10KO) mice, TAF10HET and WT mice was profiled by NGS (Illumina).
TAF10 Interacts with the GATA1 Transcription Factor and Controls Mouse Erythropoiesis.
No sample metadata fields
View SamplesNOD mice were injected once a week with LTBR-Ig to block the LTBR-pathway, or with control monoclonal antibody MOPC from age 8 to 16 weeks old. Extraorbital lacrimal glands or submaxillary glands were dissected and total mRNA prepared. Each sample was either the combined lacrimals (2) from each mouse or individual salivary glands. There were 4 mice in each treatment group. Total mRNA was isolated and the quality was assessed using the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). Reverse transcription to prepare cDNA was performed using Invitrogen M-MLV system. The purpose was to determine changes in gene expression in glands due to blockade of the LTBR-pathway.
Lymphotoxin-beta receptor blockade reduces CXCL13 in lacrimal glands and improves corneal integrity in the NOD model of Sjögren's syndrome.
Specimen part, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
miR-182 Modulates Myocardial Hypertrophic Response Induced by Angiogenesis in Heart.
Age
View Samples