This SuperSeries is composed of the SubSeries listed below.
Analysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity.
Specimen part, Cell line
View SamplesAnalysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity.
Analysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity.
Specimen part, Cell line
View SamplesAnalysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity.
Analysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity.
Specimen part, Cell line
View SamplesThese cultures were grown to examine the differences in Agr-regulated virulence factor gene expression between wild-type S. aureus FRI1169 and a non-hemolytic variant isolated from a biofilm inoculated with FRI1169. The study is described more thoroughly in the paper "Generation of virulence factor variants in Staphylococcus aureus biofilms", Yarwood et al., J. Bacteriol. 2007.
Generation of virulence factor variants in Staphylococcus aureus biofilms.
No sample metadata fields
View SamplesPreviously, using a forward genetic approach we identified B. burgdorferi arthritis-associated locus 1 (Bbaa1), a quantitative trait locus on Chr4, which physically encompasses the type I IFN gene cluster and regulates Lyme arthritis through heightened type I IFN production. Reciprocal radiation chimeras between B6.C3-Bbaa1 and B6 mice revealed that arthritis is initiated by radiation-sensitive cells, but orchestrated by radiation-resistant components of joint tissue. Advanced congenic lines were developed to reduce the physical size of the Bbaa1 interval, and RNA-seq of resident CD45- joint cells from advanced interval specific recombinant congenic lines (ISRCL4 and ISRCL3) identified myostatin as uniquely upregulated in association with Bbaa1 arthritis development. Our manuscript further demonstrates that myostatin expression is linked to IFN-ß production, and in vivo inhibition of myostatin suppresses Lyme arthritis in the reduced interval Bbaa1 congenic mice, formally implicating myostatin as a novel downstream mediator of joint-specific inflammatory response to B. burgdorferi. Overall design: 22 days following infection with B. burgdorferi, mouse rear ankle joints were gently digested into single-cell suspensions and CD45 negative cells were isolated by magnetic bead separation. CD45 negative cells from both rear ankle joints of two mice were pooled for each n sample in order to increase RNA concentration for gene expression analysis (n=5 per genotype). Gene expression comparisons were made between B6 (control group) and ISRCL4/ISRCL3 congenic lines.
Genetic Control of Lyme Arthritis by <i>Borrelia burgdorferi</i> Arthritis-Associated Locus 1 Is Dependent on Localized Differential Production of IFN-β and Requires Upregulation of Myostatin.
Specimen part, Cell line, Subject
View SamplesMammalian microRNAs (miRNAs) are emerging as key regulators of the development and function of the immune system. Here, we report a strong but transient induction of miR-155 in mouse bone marrow after injection of bacterial lipopolysaccharide (LPS) correlated with granulocyte/monocyte (GM) expansion. Demonstrating the sufficiency of miR-155 to drive GM expansion, enforced expression in mouse bone marrow cells caused GM proliferation in a manner reminiscent of LPS treatment. However, the mir-155-induced GM populations displayed pathological features characteristic of myeloid neoplasia. Extending possible relevance to human disease, miR-155 was overexpressed in the bone marrow of patients with acute myeloid leukemia (AML). Furthermore, miR-155 repressed a subset of genes implicated in hematopoietic development and disease. These data implicate miR-155 as a contributor to physiological GM expansion during inflammation and to certain pathological features associated with AML, emphasizing the importance of proper miR-155 regulation in developing myeloid cells during times of inflammatory stress.
Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder.
No sample metadata fields
View SamplesThe goal of this study was to define relationships between peripheral blood miRNAs and mRNAs of women undergoing idiopathic preterm labor (PTL) and compare network level changes to control women that deliver at term.Using RNA Sequencing we have performed global miRNA and mRNA profiling in both monocytes and whole blood leukocytes of women who underwent PTL (N=15) matched to non-pathological controls (N=30) as a part of the Ontario Birth Study cohort. We have identified differentially expressed miRNAs, mRNAs and pathways associated with PTL. Intriguingly, we found perturbations in many cellular signaling pathways, particularly in interleukin signaling. We also predicted mRNA targets for specific miRNAs and used these predictions to build putative miRNA-mRNA networks. We identified 6 miRNAs significantly associated with PTL whose expression is negatively correlated with expression of 14 predicted mRNA targets that are also significantly associated with PTL. Overall design: miRNA and mRNA were quantified from whole blood and monocytes of women undergoing spontaneous preterm labor compared to nonlabor controls matched on gestational age
Comparative analysis of gene expression in maternal peripheral blood and monocytes during spontaneous preterm labor.
Subject
View SamplesThe ATP-dependent DExH/D-box helicase DHX9 is a key participant in a number of gene regulatory steps, including transcriptional, translational, microRNA-mediated control, DNA replication, and maintenance of genomic stability. DHX9 has also been implicated in maintenance of the tumorigenic process and in drug response. Here, we report that inhibition of DHX9 expression is lethal to multiple human and mouse cancer cell lines. In contrast, using a novel conditional shDHX9 mouse model, we demonstrate that sustained and prolonged suppression of DHX9 is well tolerated at the organismal level. Our results demonstrate a robust tolerance for DHX9 knockdown in non-transformed cells and supports the targeting of DHX9 as an effective and specific chemotherapeutic approach.
Tumor cell survival dependence on the DHX9 DExH-box helicase.
Specimen part
View SamplesTo further investigate the underlying mechanisms of severe acute respiratory syndrome (SARS) pathogenesis and evaluate the therapeutic efficacy of potential drugs and vaccines it is necessary to use an animal model that is highly representative of the human condition in terms of respiratory anatomy, physiology and clinical sequelae. The ferret, Mustela putorius furo, supports SARS-CoV replication and displays many of the symptoms and pathological features seen in SARS-CoV-infected humans. We have recently established a SARS-CoV infection-challenge ferret platform for use in evaluating potential therapeutics to treat SARS. The main objective of the current study was to extend our previous results and identify early host immune responses upon infection and determine immune correlates of protection upon challenge with SARS-CoV in ferrets.
Lack of innate interferon responses during SARS coronavirus infection in a vaccination and reinfection ferret model.
Specimen part
View SamplesThe small G-protein KRAS is crucial for mediating gonadotropin-induced events associated with ovulation. However, constitutive expression of KrasG12D in granulosa cells disrupted normal follicle development leading to the persistence of abnormal follicle-like structures containing non-mitotic cells. To determine what factors mediate this potent effect of KrasG12D, gene profiling analyses were done. We also analyzed KrasG12D;Cyp19-Cre and KrasG12D;Pgr-Cre mutant mouse models that express Cre prior to or after the initiation of granulosa cell differentiation, respectively. KrasG12D induced cell cycle arrest in granulosa cells of the KrasG12D;Cyp19-Cre mice but not in the KrasG12D;Pgr-Cre mice, documenting the cell context specific effect of KrasG12D. Expression of KrasG12D silenced the Kras gene, reduced cell cycle activator genes and impaired expression of granulosa cell and oocyte specific genes. Conversely, levels of PTEN and phosphorylated p38MAPK increased markedly in the mutant granulosa cells. Because disrupting Pten in granulosa cells leads to increased proliferation and survival, Pten was disrupted in the KrasG12D mutant mice. The Pten/Kras mutant mice were infertile but lacked GCTs. By contrast, the Ptenfl/fl;KrasG12D;Amhr2-Cre mice developed aggressive ovarian surface epithelial (OSE) cell tumors that did not occur in the Ptenfl/fl;KrasG12D;Cyp19-Cre or Ptenfl/fl;KrasG12D;Pgr-Cre mouse strains. These data document unequivocally that Amhr2-Cre is expressed in and mediates allelic recombination of oncogenic genes in OSE cells. That KrasG12D/Pten mutant granulosa cells do not transform but rather undergo cell cycle arrest indicates that they resist the oncogenic insults of Kras/Pten by robust self-protecting mechanisms that silence the Kras gene and elevate PTEN and phospho-p38MAPK.
Cell type-specific targeted mutations of Kras and Pten document proliferation arrest in granulosa cells versus oncogenic insult to ovarian surface epithelial cells.
Age, Specimen part
View Samples