Effect of high grain protein locus on barley grain protein accumulation. Gene expression levels were analysed in Karl, a low grain protein variety with its near-isogenic line 10_11(has high grain protein locus, chromosome 6)using Barley1 22k affymetrix chip. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Aravind Jukanti. The equivalent experiment is BB53 at PLEXdb.]
Comparative transcriptome profiling of near-isogenic barley (Hordeum vulgare) lines differing in the allelic state of a major grain protein content locus identifies genes with possible roles in leaf senescence and nitrogen reallocation.
Age, Specimen part
View SamplesIdentification of intrathymic Eomes+ natural Th1 cells creates a novel idea that there is more than one way for the generation of innate CD4 T cells. To more deeply characterize this type of innate T cells, we compared the gene expression profile between nTh1 cells generated in CIITAtg mice and classic Th1 cells differentiated from naive CD4 T cells in Th1-polarizing condition.
Thymic low affinity/avidity interaction selects natural Th1 cells.
Age, Specimen part
View SamplesIn this study, we describe the impact of genetic variation on transcript abundance in an F2 population of Arabidopsis thaliana. The RNA-seq resource generated by this study is suitable for expression quantitative trait locus (eQTL) mapping. From the aligned RNA-seq reads, and available genomic data for each of the parents of the cross, we imputed the genomes of each F2 individual (to allow genetic mapping of RNA abundance traits; briefly, genetic differences in aligned RNA-seq reads were used to impute each F2 genome). Our results show that heritable differences on gene expression can be detected using F2 populations (that is, single F2 plants), and shed light on the control of expression differences among strains of this reference plant. Overall design: 183 samples consisting of single F2 plants of a cross between Arabidopsis thaliana accessions 8230 and 6195 were generated. For each sample, RNA was collected from the aerial shoot at the 9th true leaf stage, and Illumina mRNA-seq libraries were constructed. Using these libraries, 50 bp single end RNA-seq Illumina reads were generated for each sample, and used to quantify gene expresison in each individual. The resulting expression phenotypes are suitable for genetic mapping of the control of gene expression differences in the species.
Epistatic and allelic interactions control expression of ribosomal RNA gene clusters in Arabidopsis thaliana.
Specimen part, Subject
View SamplesWe used microarrays to assess differences in gene expression associated with single nucleotide polymorphisms occurred in three genes, PMA1, MDS3 and MKT1, as compared to a reference strain devoid of any mutations (Progenitor strain).
Cellular effects and epistasis among three determinants of adaptation in experimental populations of Saccharomyces cerevisiae.
No sample metadata fields
View SamplesTerahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. However, the biological effect of THz radiation is not fully understood. Non-thermal effects of THz radiation were investigated by applying a femtosecond-terahertz (fs-THz) pulse to mouse skin. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly through NFB1- and Smad3/4-mediated transcriptional activation. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of transforming growth factor-beta (TGF-). These findings suggest that fs-THz radiation provokes a wound-like signal in skin with increased expression of TGF- and activation of its downstream target genes, which perturbs the wound healing process in vivo.
High-power femtosecond-terahertz pulse induces a wound response in mouse skin.
Sex, Specimen part
View SamplesPhysiologically relevant concentrations of retinoic acid are added to Mouse ES cells and a time course (0-72 hours) is examined with expression tiling arrays and RNA-seq to characterize the early dynamics of expression of coding and non-coding RNAs in and around the Hox clusters. Overall design: Gene expression is examined at various timepoints (0-72 hrs) after retinoic acid induced neuronal differentiation
Dynamic regulation of Nanog and stem cell-signaling pathways by Hoxa1 during early neuro-ectodermal differentiation of ES cells.
No sample metadata fields
View SamplesTo determine the genes potentially responsible for the lactate-mediated gene expression regulation in hepatocellular carcinoma, we performed RNA-seq analyses on parental HepG2, HepG2/metR and oxamate-treated HepG2/metR cells. To gain mechanistic insights into the lactate-induced pro-migratory phenotypes, we established a cell model that acquired a resistance to metformin while producing lactate at a high level by selecting HepG2 cells that survived a chronic exposure to metformin for more than 5 months (HepG2/metR). In HepG2/metR cells, glycolysis rates were increased by more than 3 folds compared with parental cells, and consequently, lactate production was also highly enhanced. To clarify the gene expression regulation between the lactate level in the HepG2/metR model, we treated the cells with oxamate, an inhibitor of lactate dehydrogenase, and found that it significantly. Using a 2-fold change cut-off value in transcriptome, we selected 1,757 genes significantly up-regulated in HepG2/metR vs parental HepG2 cells. 690 genes were down-regulated by oxamate treatment in HepG2/metR cells. Eventually, we selected 136 genes that are common in the two gene sets, which may directly respond to lactate signaling Overall design: mRNA profiles of HepG2 cells, HepG2/metR (hyper-glycolytic cell model), oxamate treated HepG2/metR (decreased lactate concentration cell) were generated by deep sequencing using Illumina Nextseq 500
Lactate Activates the E2F Pathway to Promote Cell Motility by Up-Regulating Microtubule Modulating Genes.
Specimen part, Cell line, Treatment, Subject
View SamplesWe used RNA-seq to investigate gene expression variation in Malpighian tubules, which have a function analogous to that of human kidneys. In order to characterize population differentiation, we sequenced the Malpighian tubule transcriptomes of flies derived from two populations, one from sub-Saharan Africa (Zimbabwe) and one from Europe (the Netherlands). Males and females were examined separately. Overall, we found a high amount of differential expression between sexes (2,308 genes) and populations (2,474 genes). Although most of the differentially expressed genes were consistent between sexes and populations, there were 615 genes showed sex-biased expression in only one population and 557 genes showed population-biased expression in only one sex. Overall design: mRNA expression profiles of Drosophila melanogaster Malpighian tubules from adult males and females from a European and an African population (2 biological replicates per sex and population)
Population- and sex-biased gene expression in the excretion organs of Drosophila melanogaster.
Sex, Subject
View SamplesTotal RNA from three replicate cultures of wild-type and mutant strains was isolated and the expression profiles were determined using Affymetrix arrays. Comparisons between the sample groups allow the identification of genes regulated by histone H2A^4-20 mutant.
Regulation of gene transcription by the histone H2A N-terminal domain.
No sample metadata fields
View SamplesTotal RNA from three replicate cultures of wild-type and mutant strains was isolated and the expression profiles were determined using Affymetrix arrays. Comparisons between the sample groups allow the identification of genes regulated by the histone H2A K4,7G mutant.
Regulation of gene transcription by the histone H2A N-terminal domain.
No sample metadata fields
View Samples