This SuperSeries is composed of the SubSeries listed below.
Autophagy maintains the metabolism and function of young and old stem cells.
Specimen part
View SamplesAutophagy is critical for protecting HSCs from metabolic stress. Here, we used a genetic approach to inactivate autophagy in adult HSCs by deleting the Atg12 gene. We show that loss of autophagy causes accumulation of mitochondria and an oxidative phosphorylation (OXPHOS)-activated metabolic state, which drives accelerated myeloid differentiation likely through epigenetic deregulations rather than transcriptional changes, and impairs HSC self-renewal activity and regenerative potential.
Autophagy maintains the metabolism and function of young and old stem cells.
Specimen part
View SamplesTo identify the molecular characterisitics of parallel lineage-biased MPP populations arising from hematopoietic stem cells (HSC) we conducted genome-wide analyses of hematopoietic stem, progenitor and mature myeloid cell populations using Affymetrix Gene ST1.0 arrays.
Functionally Distinct Subsets of Lineage-Biased Multipotent Progenitors Control Blood Production in Normal and Regenerative Conditions.
Specimen part
View SamplesMultipotent stromal cells (MSC) and their osteoblastic lineage cell (OBC) derivatives are part of the bone marrow (BM) niche and contribute to hematopoietic stem cell (HSC) maintenance. During myeloproliferative neoplasm (MPN) development, MSCs are stimulated to overproduce functtionally altered OBCs, which accumulate in the BM cavity as myelofibrotic cells. These MPN-expanded OBCs, in turn, impair the maintenance of normal HSCs but not of leukemic stem cells.
Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche.
Specimen part, Time
View SamplesLoss of Rb family in HSCs results in a severe phenotype, such as enhanced proliferation and increase in stem cell number. In addition, HSCs were higly mobilized but failed to transplant. Rb family deficient mice rapidly exhibit a myeloproliferative disease with eosinophilic characteristics. Meanwhile, the lymphoid compartment was severely decreased, due to high apoptotic activity in this lineage.
Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family.
No sample metadata fields
View SamplesEpigenetic regulation serves as the basis for stem cell differentiation into distinct cell types, but it is unclear how global epigenetic changes are regulated during this process. Here, we tested the hypothesis that global chromatin organization affects the lineage potential of stem cells and that manipulation of chromatin dynamics influences stem cell function. Using nuclease sensitivity assays, we found a progressive decrease in chromatin digestion between pluripotent embryonic stem cells (ESCs), multipotent hematopoietic stem and progenitor cells (HSPCs), and mature hematopoietic cells. Quantification of chromatin composition by high-resolution microscopy revealed that ESCs contain significantly more euchromatin than HSPCs, with a further reduction in euchromatin as HSPCs transition into mature cells. Increased cellular maturation also led to heterochromatin localization to the nuclear periphery. Functionally, prevention of heterochromatin formation by inhibition of the histone methyltransferase G9a resulted in delayed hematopoietic stem cell (HSC) differentiation. Our results demonstrate significant global rearrangements of chromatin structure during embryonic and adult stem cell differentiation, and that heterochromatin formation by H3K9 methylation is an important regulator of HSC differentiation. Overall design: Examination of gene expression profile of in vitro cultured mouse HSC with the G9a inhibitor UNC0638
Progressive Chromatin Condensation and H3K9 Methylation Regulate the Differentiation of Embryonic and Hematopoietic Stem Cells.
Specimen part, Cell line, Treatment, Subject
View SamplesSingle cell RNA Seq and bioinformatic analysis are used to study what processes are important for the molecular reprogramming of GMPs after 5-FU treatment. Samples were collected at different time points (0, 8, 10, 12 and 14 days post treatment) Overall design: Single cell RNA sequencing of GMP cells upon 5-FU treatment
Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis.
Specimen part, Cell line, Treatment, Subject, Time
View SamplesTo investigate the role of FoxO transcription factors as mediators of hematopoietic stem cell resistance to oxidative stress.
FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress.
No sample metadata fields
View SamplesTo understand at the molecular level the differences between old HSCs and young HSCs we have performed genome-wide analyses using Affymetrix Gene ST 1.0 microarrays with FACS purified cell populations. In contrast to other datasets comparing young and old HSCs, we compared both young and old HSCs and GMPs, and subtracted for genes that were also differentially expressed between young and old GMPs using a zero-intercept linear model. This allowed us to identify 913 significantly differentially expressed genes that were specific to old HSCs and segregated into different clusters.
Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells.
Sex
View SamplesiNKT cells are innate-like lymphocytes that protect against infection, autoimmune disease, and cancer. However, little is known about epigenetic regulation of iNKT cell development. Here, we show that the H3K27me3 histone demethylase UTX is an essential cell-intrinsic factor that controls an iNKT lineage specific gene expression program and epigenetic landscape in a demethylase activity dependent manner. UTX deficient iNKT cells exhibit impaired expression of iNKT signature genes due to a decrease in activation-associated H3K4me3 and an increase in repressive H3K27me3 marks within the promoters that UTX occupies. Notably, we identified JunB as a novel regulator of iNKT development that partners with UTX to establish an iNKT lineage specific gene expression program. Moreover, we demonstrate that UTX-mediated regulation of super-enhancer accessibility is a key mechanism for iNKT lineage commitment. These findings uncover how UTX regulates iNKT cell development through multiple epigenetic mechanisms.
The histone demethylase UTX regulates the lineage-specific epigenetic program of invariant natural killer T cells.
Specimen part
View Samples