We examined the adherence-mediated signaling of meningococci to human cells by comparing gene expression profiles of primary human umbilical vein endothelial cells (HUVEC) infected by piliated and adherent wild-type (WT), frpC/frpA-deficient mutant, or the non-adherent (pilD) N. meningitidis MC58 bacteria defective in production of the type IV pilus, respectively. Surprisingly, no significant difference was found between the transcriptomes of HUVECs infected by bacteria producing, or not the RTX FrpC and FrpA proteins, thus failing to provide any hints on their biological activity. In contrast, pili-mediated adhesion of meningococci resulted in alterations of expression levels of human genes known to regulate apoptosis, cell proliferation, inflammatory response or adhesion. In particular, genes for signaling pathway proteins involved in early embryonic development, such as transforming growth factor- (TGF-)/Smad, Wnt/-catenin, and Notch/Jagged were found to be upregulated upon adhesion of N. meningitidis together with genes for a number of transcription factors. This reveals that adhering piliated meningocci manipulate signaling pathways controlling human cell proliferation, survival and defense mechanisms, while establishing a commensal relationship with the host.
Meningococcal adhesion suppresses proapoptotic gene expression and promotes expression of genes supporting early embryonic and cytoprotective signaling of human endothelial cells.
Specimen part
View SamplesGene expression profiles in blasts from three APL patients expressing PML/RAR were assessed before and after treatment with 1 uM retinoic acid (RA) in vitro for four hours. We then studied a U937 clone conditionally expressing PML/RAR (U937-PR), (Grignani et al. 1993) (Alcalay et al. 2003), and compared the gene expression profile prior to and after 4 hours of treatment with 1 uM RA, to that obtained from a cell line bearing an empty vector (U937-MT). For each sample, biotinylated cRNA targets were synthesized starting from 5ug of total RNA, and hybridized to the complete set of HG-U133 Affymetrix oligonucleotide chips, which explores the expression of approximately 45,000 human transcripts. Results were analyzed using MASv5 and further elaborated with the GenePicker software. GeneChip probe sets regulated by RA in each sample were clustered into non-redundant regulated genes according to UniGene release Hs.166.
Molecular signature of retinoic acid treatment in acute promyelocytic leukemia.
Specimen part, Disease, Cell line, Subject, Compound
View SamplesThese data include RNA Seq data generated from Ring1b wild type and Ring1b KO Ring1a-/- Cdkn2a-/- Lin- HSC cells non-transduced or transduced with MLL-AF9, HOXA9 and PML-RARa. Overall design: Total RNA extracted from Ring1b wild type and Ring1b KO Ring1a-/- Cdkn2a-/- Lin- HSC cells non-transduced or transduced with MLL-AF9, HOXA9 and PML-RARa.
Maintenance of leukemic cell identity by the activity of the Polycomb complex PRC1 in mice.
No sample metadata fields
View SamplesThese data include RNA Seq data generated from wild type and Ring1a Ring1b dKO Cdkn2a-/- MLL-AF9 Leukemic cells Overall design: mRNA library preparation from Ring1a-/-;Ring1bf/f Cdkn2a-/- MLL-AF9 leukemic cells treated with OHT or EtOH
Maintenance of leukemic cell identity by the activity of the Polycomb complex PRC1 in mice.
Cell line, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
AML1/ETO oncoprotein is directed to AML1 binding regions and co-localizes with AML1 and HEB on its targets.
No sample metadata fields
View SamplesPathways that govern normal stem cell (SC) function are often subverted in cancer. Here, we report the isolation to near purity of human normal mammary SC (hNMSCs), from cultured mammospheres, based on their ability to retain the lipophilic dye PKH26 as a consequence of their quiescent nature. We demonstrated that PKH26-positive cells possess all the characteristics of hNMSCs. The transcriptional profile of PKH26-positive cells (hNMSC signature) was able to predict biological and molecular features of breast cancers. By using markers of the hNMSC signature, we could prospectively isolate SCs from the normal gland and from breast tumors. Poorly-differentiated aggressive (G3) cancers displayed higher content of prospectively isolated cancer SCs, than well-differentiated less aggressive (G1) cancers. By comparing G3 and G1 tumors in xenotransplantation experiments, we directly demonstrated that G3s are enriched in cancer SCs. Our data support the notion that the heterogeneous phenotypical and molecular traits of human breast cancers are a function of their SC content.
Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content.
Specimen part
View SamplesApproximately 20% of Acute Myelogenous Leukemia (AML) cases carry the t(8;21) translocation, which involves the AML1 and ETO genes, and express the resulting AML1/ETO fusion protein that functions as a transcriptional repressor by recruiting NCoR/SMRT/HDAC complexes to DNA.
AML1/ETO oncoprotein is directed to AML1 binding regions and co-localizes with AML1 and HEB on its targets.
No sample metadata fields
View SamplesGlobal gene expression of 13 frozen samples, 6 from typical and 7 from atypical surgically resected primary lung carcinoids
Gene expression profiling reveals GC and CEACAM1 as new tools in the diagnosis of lung carcinoids.
Sex
View SamplesThe discovery of the small regulatory RNA populations has changed our vision of cellular regulations. Indeed, loaded on Argonaute proteins they formed ribonucleoprotein complexes that target complementary sequences and achieved widespread silencing mechanisms conserved in most eukaryotes. The recent development of deep sequencing approaches highly contributed to their detection. Small RNA isolation form cells and/or tissues remains a crucial stage to generate robust and relevant sequencing data. In 2006, a novel strategy based on anion-exchange chromatography has been purposed as an alternative to the standard size-isolation purification procedure. However, the eventual biases of such a method have been poorly investigated. Moreover, this strategy not only relies on advanced technical skills and expensive material but is time consuming and requires an elevated starting biological material amount. Using bioinformatic comparative analysis of six independent small RNA-sequencing libraries of Drosophila ovaries, we here demonstrate that anion-exchange chromatography purification prior to small RNA extraction unbiasedly enriches datasets in bona fide reads (small regulatory RNA reads) and depletes endogenous contaminants (ribosomal RNAs and degradation products). The resulting increase of sequencing depth provides a major benefit to study rare populations. We then developed a fast and basic manual procedure to purify loaded small non coding RNAs using anion-exchange chromatography at the bench. We validated the efficiency of this new method and used this strategy to purify small RNAs from various tissues and organisms. We moreover determined that our manual purification increases the output of the previously described anion-exchange chromatography procedure. Overall design: Comparison of small regulatory RNA populations obtained after three different small RNA purification procedures
A user-friendly chromatographic method to purify small regulatory RNAs.
Sex, Specimen part, Cell line, Subject
View SamplesThe maintenance of genome integrity is an essential trait to the successful transmission of genetic information. In animal germ cells, piRNAs guide PIWI proteins to silence transposable elements (TEs) in order to maintain genome integrity. In insects, most of TE silencing in the germline is achieved by secondary piRNAs that are produced by a feed-forward loop (the ping-pong cycle), which requires the piRNA-directed cleavages of two types of RNAs: mRNAs of functional euchromatic TEs and heterochromatic transcripts that contain defective TE sequences. The first cleavage which initiates such amplification loop remains poorly understood. Taking advantage of the existence of strains that are devoid of functional copies of the LINE-like I-element, we report that in such Drosophila ovaries, the initiation of a ping-pong cycle is achieved only by secondary I-element piRNAs that are produced in the ovary and deposited in the embryonic germline. This unusual secondary piRNA biogenesis, detected in the absence of functional I-element copies, results from the processing of sense and antisense transcripts of several different defective I-elements. Once acquired, for instance after ancestor aging, this capacity to produce heterochromatic-only secondary piRNAs is partially transmitted through generations via maternal piRNAs. Furthermore, such piRNAs acting as ping-pong initiators in a chromatin-independent manner confer to the progeny a high capacity to repress the I-element mobility. Our study explains at the molecular level the basis for epigenetic memory of maternal immunity that protects females from hybrid dysgenesis caused by transposition of paternally inherited functional I-elements. Overall design: Comparison of Drosophila small RNA populations in ovaries and/or eggs from 3-day-old or 25-day-old females.
piRNA-mediated transgenerational inheritance of an acquired trait.
Sex, Age, Specimen part, Cell line, Subject
View Samples