The role of on-CG methylation in seed development and dormancy remains unknown. There are four genes in charge of non-CG methylation in Arabidopsis: drm1, drm2, cmt2 and cmt3. The majority of non-CG methylation in vegetative tissues, leaf, is gone in homozygous ddcc mutant line (Hume et al., 2014). To uncover the possible role of non-CG DNA methylation in seed development and dormancy, we characterized the transcriptome of ddcc mutant in Arabidopsis post-mature green seeds using Illumina sequencing. Meanwhile, post-mature green seeds from wild type were used as control. Overall design: Illumina sequencing of transcripts from post-mature green seeds of ddcc mutant and wild type. Two biological replicates were collected.
Similarity between soybean and <i>Arabidopsis</i> seed methylomes and loss of non-CG methylation does not affect seed development.
Specimen part, Subject
View SamplesDetailed analysis comparing hiPSC lines that were newly generated and compared them to already established hiPSC lines
Molecular analyses of human induced pluripotent stem cells and embryonic stem cells.
Specimen part, Cell line
View SamplesPurpose: Communication between growth cones and their environment plays a central role in assembling neural circuits. We use Tandemly-Tagged Ribosome Affinity Purification (T-TRAP) of mRNA from R cells followed by RNA-seq for multiple time points during development to follow gene expression during target selection and synapse formation. Methods: We chose a ribosome trap method by modifying the N-terminus of the Drosophila ribosomal protein RpL10 with two tandemly arranged epitopes, 3X FLAG and GFP, separated by the Tobacco Etch Virus (TEV) protease site and expressed this in specific cell types using the GAL4/UAS system. cDNA libraries were prepared from mRNA associated with the affinity purified ribosomes and sequenced using an Illumina HiSeq 2000. We mapped raw reads to the D. melanogaster reference genome (release FB2013_01) with the gapped aligner Tophat. Only reads uniquely aligned were collected.Transcript expression levels were quantified using RPKM units using customized scripts written in Perl. Results: In this study, we observed massive changes in expression of cell surface proteins over short time scales (i.e. 5 fold differences in the expression of many hundreds of genes over 5 hr intervals) as R cell growth cones encounter the processes of many different neurons during their conversion from growth cones to synaptic terminals. In addition, to changes in transcripts encoding cell surface proteins, other mRNAs changed significantly as did non-coding RNAs (lincRNAs) associated with ribosomes. Although dramatic changes in transcript levels of presynaptic proteins were not observed preceding the onset of synapse formation, marked changes in the 3''-untranslated regions of these transcripts were seen. Conclusions: These studies provide a step towards merging traditional genetic and global genomic approaches to understanding cellular recognition underlying the assembly of neural circuits. Overall design: We chose 7 time points for RNA-seq analysis of R cells during pupal development corresponding to 24, 35, 40, 45, 53, 65 and 96 hrs after pupal formation (APF).
Rapid Changes in the Translatome during the Conversion of Growth Cones to Synaptic Terminals.
Age, Specimen part, Subject
View SamplesHigh grade serous ovarian cancers (HGSC) are deadly malignancies that relapse despite carboplatin chemotherapy. Here we show that 16 independent primary HGSCs contain a CA125 negative population enriched for carboplatin resistant cancer initiating cells. Transcriptome analysis reveals up-regulation of homologous recombination DNA repair and anti-apoptotic signals in this population. While treatment with carboplatin enriches for CA125 negative cells, co-treatment with carboplatin and birinapant eliminates these cells in HGSCs expressing high levels of the inhibitor of apoptosis protein cIAP in the CA125 negative population. Birinapant sensitizes CA125 negative cells to carboplatin by mediating degradation of cIAP causing cleavage of caspase-8 and restoration of apoptosis. This co-therapy significantly improved disease free survival in vivo compared to either therapy alone in tumor-bearing mice. These findings suggest that therapeutic strategies that target CA125 negative cells may be useful in the treatment of HGSC. Overall design: mRNA profiles of CA125 positive and negative populations, generated by next generation sequencing of populations FACS isolated from 10 independent dissociated primary human high grade serous ovarian cancers, were compared.
An apoptosis-enhancing drug overcomes platinum resistance in a tumour-initiating subpopulation of ovarian cancer.
No sample metadata fields
View SamplesWe used two RNA-Seq methods to measure the the global transcription levels in mouse liver cells. The data here provide insight into the pros and cons of whole transcript method and 3' RNA-Seq method. Overall design: KAPA (whole transcript method) and Lexogen (3' RNA-Seq method) were used to compare global expression in 6 mice of two conditions: 1) 3 normal diet mice 2) 3 iron-loaded diet mice.
A comparison between whole transcript and 3' RNA sequencing methods using Kapa and Lexogen library preparation methods.
Sex, Age, Specimen part, Cell line, Subject
View SamplesMechanisms by which regulatory T (Treg) cells fail to control inflammation in asthma remain poorly understood. We show that a severe asthma-associated polymorphism in the interleukin-4 receptor alpha chain (IL-4Ra-R576) biases induced Treg (iTreg) cells towards a T helper 17 (TH17) cell fate. This skewing reflects the recruitment by IL-4Ra-R576 of the adaptor protein growth factor receptor-bound protein 2 (GRB2), which drives IL-17 expression by an extracellular signal-regulated kinase-, IL-6- and STAT3-dependent mechanism. We showed that the IL-4Ra-R576 mutation elicits TH17 airway responses in vivo, in a house dust mite (HDM)- or ovalbumin (OVA)-driven model of airway inflammation in the mice carry the IL-4Ra-R576 mutation (Il4raR576 mice). Treg cell-specific deletion of genes encoding IL-6Ra or the master TH17 cell regulator Retinoid-related Orphan Receptor ?t (ROR?t), but not IL-4 and IL-13, protected mice against exacerbated airway inflammation induced by IL-4Ra--576. Analysis of lung tissue Treg cells revealed that the expression of IL-17 and the TH17 cell-associated chemokine receptor CCR6 was largely overlapping and highly enriched in Treg and conventional T (Tconv) cells of allergen-treated Il4raR576 mice. To further characterize the subset of IL-17 producing Foxp3+ Treg in the lung of OVA-treated mice we utilized CCR6 as a marker of Treg cells committed towards the TH17 cell lineage to examine their functional, epigenetic and transcriptional profiles. CCR6+Foxp3EGFP+ Treg cells isolated from OVA-sensitized and challenged Il4raR576 mice, by FACS (Fluorescence Activated Cell Sorting) exhibited decreased methylation of the Foxp3 CNS2 locus comparing to CCR6–Foxp3EGFP+ Treg cells from same animals, indicative of decreased stability. They also exhibited profoundly decreased suppressive function as compared to CCR6– WT and CCR6– Il4raR576 counterparts. Transcriptional profiling of CCR6+Foxp3EGFP+ Treg cells revealed increased relative expression in CCR6+ Il4raR576 Treg cells of genes associated with a TH17 cell signature, including Rorc, Ccr6, Il23r, Il17a, Il17f, Il1r1, Nr1d1, Cstl, and Ahr comparing to CCR6–Foxp3EGFP+ Treg cells from same animals. Overall design: Three CCR6+Foxp3EGFP+ Il4raR576 replicates and four CCR6–Foxp3EGFP+ Il4raR576 Treg replicates (controls) were sampled
An asthma-associated IL4R variant exacerbates airway inflammation by promoting conversion of regulatory T cells to TH17-like cells.
Sex, Specimen part, Subject
View SamplesThe anterior pituitary-specific transcription factor POU1F1 (also called PIT-1) was initially identified and cloned as a transactivator of PRL, GH and TSH subunit genes. Different studies indicated that POU1F1 could also have other functions in these cells. The identification of new targets of this factor could be useful to obtain a better understanding of these functions.
Research resource: A genome-wide study identifies potential new target genes for POU1F1.
Specimen part
View SamplesHigh grade serous ovarian cancers (HGSC) are deadly malignancies that relapse despite carboplatin chemotherapy. Many commercially ovarian cancer cell lines are not good models for HGSC. Here we demonstrate that 3 low passage cell lines derived from HGSC have similar transcriptomes to their parental bulk tumors. These cell lines recapitulated tumor characteristics of the primary cancer and had responded to therapy in the same manner as primary HGSC cells, demonstrating they are accurate models for HGSCs. Overall design: mRNA profiles of low passage high grade serous tumor cell lines and their parental tumors, generated by next generation sequencing, were compared.
An apoptosis-enhancing drug overcomes platinum resistance in a tumour-initiating subpopulation of ovarian cancer.
No sample metadata fields
View SamplesBackground. The cAMP Response Element Binding Protein, CREB, is a transcription factor that regulates cell proliferation, differentiation, and survival in several model systems, including neuronal and hematopoietic cells. We demonstrated that CREB is overexpressed in acute myeloid and leukemia cells compared to normal hematopoietic stem cells. CREB knockdown inhibits leukemic cell proliferation in vitro and in vivo, but does not affect long-term hematopoietic reconstitution. Therefore, we propose CREB to be a potential target for therapy. To understand downstream pathways regulating CREB, we performed expression profiling with RNA from the K562 myeloid leukemia cell line.
Expression profile of CREB knockdown in myeloid leukemia cells.
No sample metadata fields
View SamplesA role for vitamin A in host defense against Mycobacterium tuberculosis has been suggested through epidemiological and in vitro studies; however, the antimicrobial mechanism is unclear. Here, we demonstrate that vitamin A mediates host defense through regulation of cellular cholesterol content. Comparison of monocytes stimulated with all-trans retinoic acid (ATRA) or 1,25-dihydroxyvitamin D3, the biologically active forms of vitamin A and vitamin D respectively, indicates that ATRA and 1,25D3 induce mechanistically distinct antimicrobial activities. Gene expression profiling reveals that ATRA but not 1,25D3 triggers a lipid metabolism and efflux pathway, including expression of lysosomal lipid transport gene NPC2. ATRA-induced decrease in total cellular cholesterol content, subcellular lipid reorganization, lysosomal acidification and antimicrobial activity are all dependent upon expression of NPC2. Finally, the addition of HIV-protease inhibitors known to inhibit cholesterol efflux, Ritonavir and Nelfinavir, blocked both ATRA-induced cholesterol decrease as well as antimicrobial activity. Taken together, these results suggest that the vitamin A-mediated host defense mechanism against M. tuberculosis requires regulation of cellular cholesterol.
All-trans retinoic acid-triggered antimicrobial activity against Mycobacterium tuberculosis is dependent on NPC2.
Specimen part, Disease, Disease stage, Treatment, Subject
View Samples