It has been recently shown that N-ras plays a preferential role in immune cell development and function; specifically: N-ras, but not H-ras or K-ras, could be activated at and signal from the Golgi membrane of immune cells following a low level TCR stimulus. The goal of our studies was to test the hypothesis that N-ras and H-ras played distinct roles in immune cells at the level of the transcriptome.
In TCR-stimulated T-cells, N-ras regulates specific genes and signal transduction pathways.
Specimen part, Treatment
View SamplesThis study assessed the transcriptomic profiles of lutein granulosa cells (LGCs) from women with and without PCOS using Affymetrix microarray chips to provide novel information about the molecular changes that occur in these cells when they are treated with a D2-ag (Cb2) and to assess the signal transduction pathways regulated by this treatment.
Dysregulated genes and their functional pathways in luteinized granulosa cells from PCOS patients after cabergoline treatment.
Specimen part, Disease
View SamplesThe role of on-CG methylation in seed development and dormancy remains unknown. There are four genes in charge of non-CG methylation in Arabidopsis: drm1, drm2, cmt2 and cmt3. The majority of non-CG methylation in vegetative tissues, leaf, is gone in homozygous ddcc mutant line (Hume et al., 2014). To uncover the possible role of non-CG DNA methylation in seed development and dormancy, we characterized the transcriptome of ddcc mutant in Arabidopsis post-mature green seeds using Illumina sequencing. Meanwhile, post-mature green seeds from wild type were used as control. Overall design: Illumina sequencing of transcripts from post-mature green seeds of ddcc mutant and wild type. Two biological replicates were collected.
Similarity between soybean and <i>Arabidopsis</i> seed methylomes and loss of non-CG methylation does not affect seed development.
Specimen part, Subject
View SamplesTissue-resident memory T cells (Trm) are non-circulating memory T cells that localize to portals of pathogen entry such as the skin, gut and lung where they provide efficient early protection against reinfection. Trm are characterized by a molecular profile that actively prevents egress from peripheral sites including the constitutive expression of the lectin CD69 and down-regulation of the chemokine receptor (CCR)7 and sphingosine-1-phosphate receptor 1 (S1PR1). This program is partially mediated by down-regulation of the transcription factor KLF2; however, to date no transcriptional regulator specific to Trm has been identified. Here we show that the Blimp1 related transcription factor Hobit is specifically upregulated in Trm and together with Blimp1, mediates the development and maintenance of Trm in various tissues including skin, gut, liver and kidney. Importantly, we found that the Hobit/Blimp1 transcriptional module is also required for other tissue-resident lymphocytes including Natural Killer T (NKT) cells and liver tissue-resident NK cells (trNK). We show that these populations share a universal transcriptional program with Trm instructed by Hobit and Blimp1 that includes the repression of CCR7, S1PR1 and KLF2 thereby enforcing tissue retention. Our results identify Hobit and Blimp1 as major common regulators that drive the differentiation of distinct populations of tissue-resident lymphocytes. Overall design: RNA-seq data were generated for multiple tissues in mice to investigate global expression difference between resident and circulating cells.
Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes.
No sample metadata fields
View SamplesThe purpose of this study was to search for microgravity-sensitive genes, specifically for apoptotic genes influenced by the microgravity environment and other genes related to immune response.
Gene expression alterations in activated human T-cells induced by modeled microgravity.
No sample metadata fields
View SamplesTumors driven by activation of the transcription factor Myc generally show oncogene addiction. However, the gene-expression programs that depend upon sustained Myc activity in those tumors remain unknown. We have addressed this issue in a model of liver carcinoma driven by a reversible tet-Myc transgene, combining gene expression profiling with the mapping of Myc and RNA Polymerase II on chromatin. Switching off the oncogene in advanced carcinomas revealed that Myc is required for the continuous activation and repression of distinct sets of genes, constituting no more than half of those deregulated during tumor progression, and an even smaller subset of all Myc-bound genes. We further showed that a Myc mutant unable to associate with the co-repressor protein Miz1 is defective in the initiation of liver tumorigenesis. Altogether, our data provide the first detailed analysis of a Myc-dependent transcriptional program in a fully developed carcinoma, revealing that the critical effectors of Myc in tumor maintenance must be included within defined subsets (ca. 1,300 each) of activated and repressed genes. Overall design: RNAseq samples of control liver (n=11), tet-Myc tumors (n=16), tet-Myc tumors with short-term Myc inactivation (n=8), tet-MycVD tumors (n=11)
Identification of MYC-Dependent Transcriptional Programs in Oncogene-Addicted Liver Tumors.
Specimen part, Cell line, Subject
View SamplesDetailed analysis comparing hiPSC lines that were newly generated and compared them to already established hiPSC lines
Molecular analyses of human induced pluripotent stem cells and embryonic stem cells.
Specimen part, Cell line
View SamplesThe ATP-dependent DExH/D-box helicase DHX9 is a key participant in a number of gene regulatory steps, including transcriptional, translational, microRNA-mediated control, DNA replication, and maintenance of genomic stability. DHX9 has also been implicated in maintenance of the tumorigenic process and in drug response. Here, we report that inhibition of DHX9 expression is lethal to multiple human and mouse cancer cell lines. In contrast, using a novel conditional shDHX9 mouse model, we demonstrate that sustained and prolonged suppression of DHX9 is well tolerated at the organismal level. Our results demonstrate a robust tolerance for DHX9 knockdown in non-transformed cells and supports the targeting of DHX9 as an effective and specific chemotherapeutic approach.
Tumor cell survival dependence on the DHX9 DExH-box helicase.
Specimen part
View SamplesBased on the assumption that molecular mechanisms involved in cancerogenesis are characterized by groups of coordinately expressed genes, we developed and validated a novel method for analyzing transcriptional data called Correlated Gene Set Analysis (CGSA). Using 50 extracted gene sets we identified three different profiles of tumors in a cohort of 364 Diffuse large B-cell (DLBCL) and related mature aggressive B-cell lymphomas other than Burkitt lymphoma. The first profile had high level of expression of genes related to proliferation whereas the second profile exhibited a stromal and immune response phenotype. These two profiles were characterized by a large scale gene activation affecting genes which were recently shown to be epigenetically regulated, and which were enriched in oxidative phosphorylation, energy metabolism and nucleoside biosynthesis. The third and novel profile showed only low global gene activation similar to that found in normal B cells but not cell lines. Our study indicates novel levels of complexity of DLBCL with low or high large scale gene activation related to metabolism and biosynthesis and, within the group of highly activated DLBCLs, differential behavior leading to either a proliferative or a stromal and immune response phenotype.
Massive transcriptional perturbation in subgroups of diffuse large B-cell lymphomas.
No sample metadata fields
View SamplesPost-traumatic stress disorder is a concerning psycho behavioral disorder thought to emerge from the complex interaction between genetic and environmental factors. For soldiers exposed to combat, the risk of developing this disorder is two-fold and diagnosis is often late, when much sequela has set in. To be able to identify and diagnose in advance those at “risk” of developing PTSD, would greatly taper the gap between late sequelae and treatment. Therefore, this study sought to test the hypothesis that the transcriptome can be used to track the development of PTSD in this unique and susceptible cohort of individuals. Gene expression levels in peripheral blood samples from 85 Canadian infantry soldiers (n = 58 subjects negative for PTSD symptoms and n = 27 subjects with PTSD symptoms) were determined by RNA sequencing technology following their return from deployment to Afghanistan. Count-based gene expression quantification, normalization and differential analysis (with thorough correction for confounders) revealed significant differences in two genes, LRP8 and GOLM1 . These preliminary results provide a proof-of-principle for the diagnostic utility of blood-based gene expression profiles for tracking symptoms of post-traumatic stress disorder in soldiers returning from tour. It is also the first to report transcriptome-wide expression profiles alongside a post-traumatic symptom checklist. Overall design: Peripheral blood samples from 85 Canadian infantry soldiers (n = 58 subjects negative for PTSD symptoms and n = 27 subjects with PTSD symptoms)
Using Next-Generation Sequencing Transcriptomics To Determine Markers of Post-traumatic Symptoms: Preliminary Findings from a Post-deployment Cohort of Soldiers.
Sex, Subject
View Samples