Analysis of primary human bronchial epithelial cells grown in air liquid interface, exposed in vitro to whole tobacco cigarette smoke (48 puffs, 48 minutes) and electronic cigarette aerosol (400 puffs, 200 minutes). Electronic cigarette exposures included two flavors (menthol, tobacco) both with, and without nicotine.
Molecular Impact of Electronic Cigarette Aerosol Exposure in Human Bronchial Epithelium.
Specimen part
View SamplesIn this study, we report the performance of one such technique denoted as sparse full length sequencing (SFL), a ribosomal RNA depletion-based RNA sequencing approach that allows for the simultaneous sequencing of 96 samples and higher. We offer comparisons to well established single-sample techniques, including: full coverage Poly-A capture RNA-seq and microarray, as well as another low-cost highly multiplexed technique known as 3' digital gene expression (3' DGE). Data was generated for a set of exposure experiments on immortalized human lung epithelial (AALE) cells in a two-by-two study design, in which samples received both genetic and chemical perturbations of known oncogenes/tumor suppressors and lung carcinogens. SFL demonstrated improved performance over 3' DGE in terms of coverage, power to detect differential gene expression, and biological recapitulation of patterns of differential gene expression from in vivo lung cancer mutation signatures. Overall design: 3' Digital Gene Expression (3'DGE) for immortalized human bronchial epithelial cells (AALE) exposed to chemical and genotypic perturbations
Assessment of a Highly Multiplexed RNA Sequencing Platform and Comparison to Existing High-Throughput Gene Expression Profiling Techniques.
Specimen part, Cell line, Subject
View SamplesThe aim of this experiment was to investigate the role of KLF3 in regulating gene expression at different stages throughout the erythroid maturation process.
The CACCC-binding protein KLF3/BKLF represses a subset of KLF1/EKLF target genes and is required for proper erythroid maturation in vivo.
Specimen part
View SamplesThe aim of this experiment was to investigate the role of KLF1 in the fetal liver
The CACCC-binding protein KLF3/BKLF represses a subset of KLF1/EKLF target genes and is required for proper erythroid maturation in vivo.
Specimen part
View SamplesThe human and mouse aryl hydrocarbon receptor (hAHR and mAHRb) share limited (58%) transactivation domain sequence identity. Compared to the mAHRb allele, the hAHR displays 10-fold lower relative affinity for prototypical ligands such as 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD). However, in previous studies we have demonstrated that the hAHR can display a higher relative ligand binding affinity than the mAHRb for specific AHR ligands such as indirubin. Each receptor has also been shown to differentially recruit LXXLL co-activator-motif proteins and to utilize different TAD subdomains in gene transactivation. Using hepatocytes isolated from C57BL6/J mice (Ahrb/b) and AHRTtr transgenic mice which express hAHR protein specifically in hepatocytes, we investigated whether the hAHR and mAHRb differentially regulate genes. Microarray and quantitative-PCR analysis of Ahrb/b and AHRTtr primary-mouse hepatocytes treated with 10 nM TCDD revealed that a number of established AHR target genes such as Cyp1a1 and Cyp1b1 are significantly induced by both receptors. Remarkably, of the 1752 genes induced by mAHRb and 1186 genes induced by hAHR, only 265 genes (<10%) were significantly activated by both receptors in response to TCDD. Conversely of the 1100 and 779 genes significantly repressed in mAHRb and hAHR hepatocytes respectively, only 462 (<25%) genes were significantly repressed by both receptors in response to TCDD treatment. Genes identified as differentially expressed are known to be involved in a number of biological pathways, including cell proliferation and inflammatory response which suggests that compared to the mAHRb, the hAHR may play contrasting roles in TCDD-induced toxicity and endogenous AHR-mediated gene regulation.
Differential gene regulation by the human and mouse aryl hydrocarbon receptor.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium.
Sex, Age, Race
View SamplesmRNA expression was assayed from bronchial epithelial cells collected via bronchoscopy from healthy current and never smoker volunteers in order to determine relationships between microRNA and mRNA expression in bronchial epithelial cell samples across current and never smokers and within the same individual.
MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium.
Sex, Age, Race
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNA 4423 is a primate-specific regulator of airway epithelial cell differentiation and lung carcinogenesis.
Sex
View SamplesSmoking is a significant risk factor for lung cancer, the leading cause of cancer-related deaths worldwide. While microRNAs are regulators of many airway gene-expression changes induced by smoking, their role in modulating changes associated with lung cancer in these cells remains unknown. Here, we use next-generation sequencing of small RNAs in the airway to identify miR-4423 as a novel primate-specific microRNA associated with lung cancer and expressed primarily in mucociliary epithelium. The endogenous expression of miR-4423 increases as bronchial epithelial cells undergo differentiation into mucociliary epithelium in vitro and its overexpression during this process causes an increase in the number of ciliated cells. Furthermore, expression of miR-4423 is reduced in most lung tumors and in cytologically normal epithelium of the mainstem bronchus of smokers with lung cancer. In addition, ectopic expression of miR-4423 in a subset of lung cancer cell lines reduces their anchorage-independent growth and significantly decreases the size of the tumors formed in a mouse xenograft model. Consistent with these phenotypes, overexpression of miR-4423 induces a differentiated-like pattern of airway epithelium gene expression and reverses the expression of many genes that are altered in lung cancer. Together, our results indicate that miR-4423 is a novel regulator of airway epithelium differentiation and that the abrogation of its function contributes to lung carcinogenesis.
MicroRNA 4423 is a primate-specific regulator of airway epithelial cell differentiation and lung carcinogenesis.
No sample metadata fields
View SamplesProtein synthesis belongs to the most energy consuming processes in the cell. Lowering oxygen tension below normal (hypoxia) causes a rapid inhibition of global mRNA translation due to the decreased availability of energy. Interestingly, subsets of mRNAs pursue active translation under such circumstances. In human fibrosarcoma cells (HT1080) exposed to prolonged hypoxia (36 h, 1% oxygen) we observed that transcripts are either increasingly or decreasingly associated with ribosomes localized at the endoplasmic reticulum (ER). In a global setting it turned out that only 31% of transcripts showing elevated total-RNA levels were also increasingly present at the ER in hypoxia. These genes, regulated by its expression as well as its ER-localization, belong to the gene ontologys hypoxia response, glycolysis and HIF-1 transcription factor network supporting the view of active mRNA translation at the ER during hypoxia. Interestingly, a large group of RNAs was found to be unchanged at the expression level, but translocate to the ER in hypoxia. Among these are transcripts encoding translation factors and >180 ncRNAs. In summary, we provide evidence that protein synthesis is favoured at the ER and, thus, partitioning of the transcriptome between cytoplasmic and ER associated ribosomes mediates adaptation of gene expression in hypoxia.
Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum.
Specimen part, Cell line
View Samples