In the mammalian central nervous system (CNS) an important contingent of dopaminergic neurons are localized in the substantia nigra and in the ventral tegmental area of the ventral midbrain. They constitute an anatomically and functionally heterogeneous group of cells involved in a variety of regulatory mechanisms, from locomotion to emotional/motivational behavior. Midbrain dopaminergic neuron (mDA) primary cultures represent a useful tool to study molecular mechanisms involved in their development and maintenance. Considerable information has been gathered on the mDA neurons development and maturation in vivo, as well as on the molecular features of mDA primary cultures. Here we investigated in detail the gene expression differences between the tissue of origin and ventral midbrain primary cultures enriched in mDA neurons, using microarray technique. We integrated the results based on different re-annotations of the microarray probes. By using knowledge-based gene network techniques and promoter sequence analysis, we also uncovered mechanisms that might regulate the expression of CNS genes involved in the definition of the identity of specific cell types in the ventral midbrain. We integrate bioinformatics and functional genomics, together with developmental neurobiology. Moreover, we propose guidelines for the computational analysis of microarray gene expression data. Our findings help to clarify some molecular aspects of the development and differentiation of DA neurons within the midbrain.
Comparison of gene expression profile in embryonic mesencephalon and neuronal primary cultures.
Specimen part, Disease
View SamplesTo identify novel Nurr1 target genes we have used microarrays strategies in rat midbrain primary cultures, enriched in dopaminergic neurons, by the action of basic fibroblast growth factor (bFGF, 20ng/ml) and Sonic hedgedog (SHH), following upregulation of Nurr1 expression by depolarization.To this aim we have treated the cultures after 9 days in vitro for 2h with high KCl and collected 30 min or 2 h after the end of depolarization (2h + 30 min or 2h + 2h). With this experimental protocol we have identify a putative Nurr1 regulator and Nurr1 target
Bdnf gene is a downstream target of Nurr1 transcription factor in rat midbrain neurons in vitro.
Specimen part
View SamplesWe conducted a preliminary investigation to determine whether ethanol-induced alterations in placental gene expression may have some utility as a diagnostic indicator of maternal drinking during pregnancy as well as a prognostic indicator of risk for adverse neurobehavioral outcomes in affected offspring.
Effects of moderate drinking during pregnancy on placental gene expression.
Specimen part
View SamplesThe goal of the study was to determine the effect of lentiviral- mediated overexpression of miR-495 (LV-miR-495) on the levels of gene expression in the nuclues accumbens of rats relative to control rats injected with the empty vector (LV-GFP).
In silico identification and in vivo validation of miR-495 as a novel regulator of motivation for cocaine that targets multiple addiction-related networks in the nucleus accumbens.
No sample metadata fields
View SamplesTherapeutic targeting of BRAFV600E has shown a significant impact on progression-free and overall survival in advanced melanoma, but only a fraction of patients benefit from these treatments, suggesting that additional signaling pathways involved in melanoma growth/survival need to be identified. In fact MAPK and PI3K/mTOR signaling pathways are constituively activated in most cancers, including melanoma, to sustain the melanoma growth/survival. A large panel of melanoma were characterized for resistance/susceptibility to different inhibitors targeting MAPK and PI3K/mTOR signaling pathways and the synergistic effect of combinatorial treatments affecting both pathways. These effects were evaluated in terms of cell viability (MTT), apoptosis (Annexin V-PI), caspase 3/7 activity and subG1 cell fraction, highlighting a hierarchy in the combination effects. Further, a smaller panel of melanoma cell lines, were treated with inhibitors singularly and in combination to test the effects on the expression of principal proteins involved in these two pathways. Gene expression profile was performed to analyse the gene modulation induced by inhibitors to identify new strategies to fight melanoma resistance.
Primary cross-resistance to BRAFV600E-, MEK1/2- and PI3K/mTOR-specific inhibitors in BRAF-mutant melanoma cells counteracted by dual pathway blockade.
Specimen part, Cell line, Treatment
View SamplesThe implication of alveolar macrophages (AM) in asthma, a Th2 disease, has not been well characterized. Thus, the goal of this study is to better characterize AM phenotype of allergic asthmatic compared with normal subjects using genomic expression analyses. Microarray analyses were performed with AM isolated from bronchoalveolar lavage. Robust multiarray analysis (RMA) normalization and Smyths moderated t test were used to select differentially expressed genes. Fifty differentially expressed genes were identified. Nineteen have been classified in categories linked to stress or immune responses and among them; nine are part of the heat shock protein (HSP) family. Difference of expression for three (HSPD1, PRNP, SERPINH1) of the five selected genes were validated using real-time reverse transcriptionpolymerase chain reaction. Enzyme linked immunosorbent assay was used to measure the protein level of heat shock protein 60 (HSP60), the protein encoded by HSPD1, and showed difference in AM protein level between allergic asthmatic and control subjects. In summary, this study suggests that HSP gene family, particularly HSP60, is involved in AM functions in a context of allergic asthma. These results also support the involvement of AM immune functions in the development of an allergic asthmatic response.
Alveolar macrophages in allergic asthma: an expression signature characterized by heat shock protein pathways.
Specimen part, Disease, Disease stage
View SamplesPURPOSE. During retinal degeneration, Müller glia cells respond to photoreceptor loss by undergoing reactive gliosis, with both detrimental and beneficial effects. Increasing our knowledge of the complex molecular response of Müller cells to retinal degeneration is thus essential for the development of new therapeutic strategies. The purpose of this work was to identify new factors involved in Müller cell response to photoreceptor cell death. METHODS. Whole transcriptome sequencing was performed from wild-type and degenerating rd10 mouse retinas at P30. The changes in mRNA abundance for several deregulated genes were assessed by RT-qPCR. Protein expression level and retinal cellular localization were determined by western-blot and immunohistochemistry, respectively. RESULTS. Pathway-level analysis from whole transcriptomic data revealed the Hippo/YAP pathway as one of the main signaling pathways altered in response to photoreceptor degeneration in rd10 retinas. We found that downstream effectors of this pathway, YAP and TEAD1, are specifically expressed in Müller cells and that their expression, at both the mRNA and protein levels, is increased in rd10 reactive Müller glia after the onset of photoreceptor degeneration. The expression of Ctgf and Cyr61, two target genes of the transcriptional YAP/TEAD complex, is also upregulated following photoreceptor loss. CONCLUSIONS. This work reveals for the first time that YAP and TEAD1, key downstream effectors of the Hippo pathway, are specifically expressed in Müller cells. We also uncovered a deregulation of the expression and activity of Hippo/YAP pathway components in reactive Müller cells under pathological conditions. Overall design: Retinal samples were harvested from C57Bl6/J and rd10 mouse retina at postnatal days 30 for whole transcriptome sequencing (RNAseq). Each sample included 2 frozen retina and experiments were performed in triplicate. RNA-seq transcriptome libraries were constructed from 1 ug of total RNA.
Retinal Degeneration Triggers the Activation of YAP/TEAD in Reactive Müller Cells.
Specimen part, Cell line, Subject
View SamplesThe inflammatory response of preterm infants' intestine underlines its inability to respond to hemodynamic stress, microbes and nutrients. Recent evidence suggests that exogenous epidermal growth factor (EGF) exerts a therapeutic influence on neonatal enteropathies. However, the molecular mechanisms underlying the beneficial effects of EGF remain to be clarified. The purpose of this study was to evaluate the impact of EGF on the gene expression profiles of the developing human small and large intestine at mid-gestation in serum-free organ cultures using Illumina microarrays.
Anti-inflammatory effects of epidermal growth factor on the immature human intestine.
Specimen part
View SamplesContrasting with fish or amphibian, retinal regeneration from Müller glial cells is largely limited in mammals. In our quest towards the identification of molecular cues that may boost their stemness potential, we investigated the involvement of the Hippo pathway effector YAP, which we previously found to be upregulated in Müller cells following retinal injury. We report that conditional Yap deletion in Müller cells prevents the upregulation of cell cycle genes that normally accompanies reactive gliosis upon photoreceptor cell death. This occurs as a consequence of defective EGFR signaling. Consistent with a function of YAP in triggering Müller glia cell cycle re-entry, we further show that in Xenopus, a species endowed with efficient regenerative capacity, YAP is required for their injury-dependent proliferative response. Finally, and noteworthy, we reveal that YAP overactivation in mouse Müller cells is sufficient to induce their reprogramming into highly proliferative cells. Overall, we unravel a pivotal role for YAP in tuning Müller cell response to injury and highlight a novel YAP-EGFR axis by which Müller cells exit their quiescence state, a critical step towards regeneration. Overall design: Retinal samples were harvested from Yapflox/flox; Rax-CreERT2 mouse line allowing for Cre-mediated conditional gene ablation specifically in Müller cells. It is named Yap CKO while “control” refers to Yapflox/flox mice. Yap deletion was induced in fully differentiated Müller cells, through 4-hydroxytamoxifen (4-OHT) intraperitoneal injection at P10. All animals were injected with 4-OHT. Each sample included 1 frozen retina and experiments were performed in triplicate. RNA-seq transcriptome libraries were constructed from 1 ug of total RNA.
Linking YAP to Müller Glia Quiescence Exit in the Degenerative Retina.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MerTK Is a Functional Regulator of Myelin Phagocytosis by Human Myeloid Cells.
Specimen part, Subject
View Samples