The import of nuclear transcribed RNAs into mitochondria is an emerging area that presents tremendous opportunity to develop human metabolic therapeutics. However, our knowledge base is quite limited. Much remains to be discovered regarding specific RNA localization and mechanisms of import. In order to identify novel RNAs imported into mitochondria, all RNAs within the mitochondria were characterized using next generation sequencing technology. Several nuclear transcribed RNAs were found within mitochondrial RNA samples, including nuclear ribosomal RNAs, gamma satellite RNA and VL30 retroelement RNA. The presence of these RNAs within mitochondria coupled with RNA sequencing data (RNAseq) from other laboratories investigating mitochondrial RNA processing, lead us to hypothesize that nuclease treatment of mitoplasts is insufficient for removing contaminating cytoplasmic RNAs. In contrast to traditional methodology, mitochondrial import was evaluated by qRT-PCR after stepwise removal of the outer mitochondrial membrane and subsequent lysis of mitochondria. This allowed identification of RNAs lost from the mitochondria with the same kinetics as mtDNA-transcribed RNAs. This approach provided an improved evaluation of nuclear RNA enrichment within mitochondrial membranes in order to characterize nuclease protection and mitochondrial import and identify false-positive detection errors. qRT-PCR results confirmed the presence of VL30 retroelement RNA within mitochondria and question the hypothesis that the RNA component of RNase P is imported. These results illustrate a reliable approach for evaluating the presence of RNAs within mitochondria and open new avenues of investigation relating to mitochondrial RNA biology and in targeting mitochondrial based therapeutics. Overall design: RNA isolated from purified mitoplasts was sequenced on an Illumina Genome Analyzer IIx
Mitochondrially-imported RNA in drug discovery.
No sample metadata fields
View SamplesCurrently there is a lack of effective therapies which result in long-term durable response for patients presenting with anaplastic thyroid carcinoma (ATC), a very rare and lethal variant of thyroid cancer. ATC is resistant to chemotherapy, radiation, and targeted therapies currently available. In an effort to identify novel tumor-specific therapeutic targets, we performed high throughput gene array analysis screening numerous patient ATC tumor tissues, and compared their gene expression levels to matched and unmatched normal thyroid tissue samples.
Aberrant lipid metabolism in anaplastic thyroid carcinoma reveals stearoyl CoA desaturase 1 as a novel therapeutic target.
Specimen part
View SamplesPurpose:The goals of this study was to determine alterations in expression levels of transcripts downstream of a dominant-negative transcription factor. Quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods was used to confirm the altered expression of targets. Methods: Striatal mRNA profiles of 11-month-old wild-type (WT) and Nestin-Cre X PPAR delta E411P mice were generated by deep sequencing, in triplicate, using Illumina HiSeq 2000. The sequence reads that passed quality filters were analyzed at the transcript isoform level with TopHat followed by Cufflinks. qRT–PCR validation was performed using TaqMan and SYBR Green assays. Western blots, and immunofluorescence was also used to confirm if altered mRNA levels translated to changes at the protein level. Results: Using data analysis workflow, we mapped sequence reads for each sample to the mouse genome (build mm9) and identified transcripts in the striatum of WT and PPARdelta E411P mice. Conclusions: Our study found multiple transcripts altered in the striatum of the Nestin-Cre x PPAR delta E411P mice as compared to WT striatum, as generated by RNA-SEQ in biologic replicates. Overall design: Striatal mRNA profiles of 11-month-old wild type (WT) and Nestin-Cre X PPAR delta E411P mice were generated by deep sequencing, in triplicate, using Illumina HiSeq2000.
PPAR-δ is repressed in Huntington's disease, is required for normal neuronal function and can be targeted therapeutically.
Specimen part, Cell line, Subject
View SamplesRecent studies suggest that thousands of genes may contribute to breast cancer pathophysiologies when deregulated by genomic or epigenomic events. Here, we describe a model system to appraise the functional contributions of these genes to breast cancer subsets. In general, the recurrent genomic and transcriptional characteristics of 51 breast cancer cell lines mirror those of 145 primary breast tumors, although some significant differences are documented. The cell lines that comprise the system also exhibit the substantial genomic, transcriptional, and biological heterogeneity found in primary tumors. We show, using Trastuzumab (Herceptin) monotherapy as an example, that the system can be used to identify molecular features that predict or indicate response to targeted therapies or other physiological perturbations.
A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes.
Cell line
View SamplesErlotinib is a tyrosine kinase inhibitor (TKI) that is approved as a second-line monotherapy in patients with advanced non-small cell lung cancer (NSCLC). In these patients, erlotinib prolongs survival but its benefit remains modest since many tumors express wild-type EGF receptor (wtEGFR) lacking a TKI-sensitizing mutation, develop a second-site EGFR mutation, e.g., EGFR-L858R/T790M, or activate an alternate receptor tyrosine kinase, e.g., through MET amplification. To test potential drug combinations that could improve the efficacy of erlotinib, we combined erlotinib with quinacrine, which inhibits the FACT (facilitates chromatin transcription) complex that is required for nuclear factor-B (NF-B) transcriptional activity. In A549 (wtEGFR), H1975 (EGFR-L858R/T790M) and H1993 (MET amplification) NSCLC cells, the combination of erlotinib and quinacrine was highly synergistic, as quantified by Chou-Talalay combination indices. The combination inhibited colony formation, induced cell cycle arrest and apoptosis, and slowed xenograft tumor growth. Quinacrine decreased the level of active FACT subunit SSRP1 and suppressed NF-B-dependent luciferase activity. Knockdown of SSRP1 decreased cell growth and sensitized cells to erlotinib.
Quinacrine overcomes resistance to erlotinib by inhibiting FACT, NF-κB, and cell-cycle progression in non-small cell lung cancer.
Cell line, Treatment
View SamplesRift Valley fever virus (RVFV) causes major outbreaks among livestock, characterized by “abortion storms” in which spontaneous abortion occurs in almost 100% of pregnant ruminants. Humans can also become infected with mild symptoms that can progress to more severe symptoms, such as hepatitis, encephalitis, and hemorrhagic fever. The goal of this study was to use RNA-sequencing (RNA-seq) to analyze the host transcriptome in response to RVFV infection. G2/M DNA damage checkpoint, ATM signaling, mitochondrial dysfunction, regulation of the antiviral response, and integrin-linked kinase (ILK) signaling were among the top altered canonical pathways with both the attenuated MP12 strain and the fully virulent ZH548 strain. Although several mRNA transcripts were highly upregulated, an increase at the protein level was not observed for the selected genes, which was at least partially due to the NSs dependent block in mRNA export. Inhibition of ILK signaling, which is involved in cell motility and cytoskeletal reorganization, resulted in reduced RVFV replication, indicating that this pathway is important for viral replication. Overall, this is the first global transcriptomic analysis of the human host response following RVFV infection, which could give insight into novel host responses that have not yet been explored. Overall design: The study included triplicate samples of HSAEC cells infected with Mock, MP12, or ZH548 strains of RVFV, and collected at 3, 9, and 18 hourse post-infection. There are a total of 27 samples.
Phosphoproteomic analysis reveals Smad protein family activation following Rift Valley fever virus infection.
Specimen part, Subject, Time
View SamplesBackground: Kawasaki Disease (KD) is a childhood illness of suspected infectious etiology that causes medium-sized muscular arteritis, most critically affecting the coronary arteries. No single diagnostic test exists, hampering early diagnosis and treatment. Approximately 25% of untreated patients develop coronary artery disease, and children who are treated with intravenous gammaglobulin but do not respond are also at high risk. Subacute/chronic arteritis and luminal myofibroblastic proliferation are the pathologic processes occurring in KD CA after the second week of illness, when neutrophilic necrotizing arteritis has subsided. The specific dysregulated immune pathways contributing to subacute/chronic arteritis have been unknown, hampering the development of effective immunomodulatory therapies for patients not responding to intravenous gammaglobulin therapy. Methods and Results: Deep RNA sequencing was performed on KD (n=8) and childhood control (n=7) coronary artery tissues, revealing 1074 differentially expressed mRNAs. Molecular pathways involving T helper cell, cytotoxic T lymphocyte, dendritic cells, and antigen presentation were the most significantly dysregulated. There was significant upregulation of immunoglobulin and type I interferon-stimulated genes. 80 upregulated extracellular genes encoding secreted proteins are candidate biomarkers of KD arteritis. Conclusions: The immune transcriptional profile in KD coronary artery tissues is primarily T helper and cytotoxic lymphocyte-mediated, and has features of an antiviral immune response such as type I interferon-stimulated gene expression. This first report of the KD coronary artery transcriptome identifies specific dysregulated immune response pathways that can inform the development of new therapies for and biomarkers of KD arteritis, and provide direction for future etiologic studies. Overall design: Primary analysis: 8 KD coronary arteries versus 7 childhood control coronary arteries. Subanalysis 1: 4 untreated KD coronary arteries versus 7 childhood control coronary arteries and subanalysis 2: 4 treated KD coronary arteries versus 7 childhood control coronary arteries
The transcriptional profile of coronary arteritis in Kawasaki disease.
No sample metadata fields
View SamplesMultiple myeloma (MM) evolves from highly prevalent premalignant condition termed Monoclonal Gammopathy of Undetermined Significance (MGUS). We report an MGUS-MM phenotype arising in transgenic mice with Emu-directed expression of the unfolded protein/ER stress response and plasma cell development spliced isoform factor XBP-1s. Emu-XBP-1s elicited elevated serum Ig and IL-6 levels, skin alterations and with advancing age, a significant proportion of Emu-xbp-1s transgenic mice develop features diagnostic of human MM including bone lytic lesions. Transcriptional profiles of Emu-xbp-1s B lymphoid and MM cells show aberrant expression of genes known to be dysregulated in human MM including Cyclin D1, MAF, MAFB, and APRIL. This genetic model coupled with documented frequent XBP-1s overexpression in human MM serve to implicate chronic XBP-1s dysregulation in the development of this common and lethal malignancy.
The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis.
No sample metadata fields
View SamplesPurpose: The goals of this study were to identify quantitative gene expression differences between whole tumor and tumor-associated macrophages (TAMs) derived from Lewis lung carcinoma (LLC) tumors grown in wild type and PI3Kinase-gamma-null mice. Methods: mRNA profiles of whole tumor or tumor-associated macrophages (CD11b+Gr1- cells) from wild type (WT) or PI3Kinase-gamma-knockout (p110g-/-) mice were generated by single deep read sequencing, in triplicate or quadruplicate, using Illumina HiSeq 2000. The sequence reads that passed quality filters were aligned to mouse transcriptome using the bowtie2 aligner. Gene-level summaries were normalized and analyzed for differential expression using DESeq. Overall design: mRNA profiles of whole tumor and tumor-associated macrophages from WT and p110g-/- mice were generated by deep sequencing in triplicate or quadruplicate using Illumina HiSeq 2000.
PI3Kγ is a molecular switch that controls immune suppression.
Specimen part, Subject, Time
View SamplesPurpose: The goals of this study were to identify quantitative gene expression differences between macrophages derived from wild type and PI3Kgamma null macrophages Methods: mRNA profiles of MCSF, IL4 and IFNg/LPS stimulated macrophage wild-type (WT) and PI3Kinase gamma knockout (p110g-/-) mice were generated by single read deep sequencing, in triplicate, using Illumina HiSeq2000. The sequence reads that passed quality filters were aligned to mouse transcriptome using the bowtie2 aligner. Gene-level summaries were normalized and analyzed for differential expression using DESeq. qRT–PCR validation was performed using SYBR Green assays. Conclusions: Our study represents the first detailed analysis of the role of p110g in the control of the macrophage immune response, with biological replicates, generated by RNA-seq technology. Overall design: mRNA profiles of wild type (WT) and p110g-/- macrophages were generated by deep sequencing, in triplicate, using Illumina HiSeq2000.
PI3Kγ is a molecular switch that controls immune suppression.
No sample metadata fields
View Samples