This SuperSeries is composed of the SubSeries listed below.
The DNA double-strand break response is abnormal in myeloblasts from patients with therapy-related acute myeloid leukemia.
Specimen part, Disease stage
View SamplesIn order to examine if the upregulation of DNA repair genes on chromosome 8 was associated with the abnormal DSB phenotype observed in trisomy 8 (defined by array CGH or cytogenetics), we compared the mRNA levels of DNA repair genes on chromosome 8 in trisomy 8 t-AML patients versus normal t-AML gammaH2AX responders using gene expression array data.
The DNA double-strand break response is abnormal in myeloblasts from patients with therapy-related acute myeloid leukemia.
Specimen part
View SamplesTumor epithelial cells develop within a microenvironment consisting of extracellular matrix, growth factors, and cytokines produced by non-epithelial stromal cells. In response to paracrine signals from tumor epithelia, stromal cells modify the microenvironment to promote tumor growth and metastasis. Here, we identify interleukin (IL)-33 as an epithelial cell-derived regulator of stromal cell activation and mediator of intestinal polyposis. IL-33 expression was elevated in the tumors and serum of colorectal cancer patients and induced in the adenomatous polyps of ApcMin/+ mutant mice. Genetic and antibody suppression of IL-33 signaling in ApcMin/+ mice inhibited proliferation, induced apoptosis, and suppressed angiogenesis in polyps, which reduced both tumor number and size. In ApcMin/+ polyps, IL-33 expression localized to tumor epithelial cells and expression of the IL-33 receptor, IL1RL1, associated with two stromal cell types, namely subepithelial myofibroblasts (SEMFs) and mast cells, whose activation was previously associated with polyposis. In vitro IL-33 stimulation of human SEMFs induced the expression of extracellular matrix components and growth factors associated with intestinal tumor progression. IL-33 deficiency reduced mast cell accumulation in ApcMin/+ polyps and expression of mast cell-derived proteases and cytokines known to promote polyposis. Together, our results suggest that IL-33 is a tumor epithelial cell-derived paracrine signal that promotes polyposis through the coordinated activation of stromal cells and the formation of a reactive stroma microenvironment. Overall design: Six T-75 flasks of CCD-18Co cells were grown to 80% confluency; three were treated with rhIL-33, three were given vehicle control; cells were trypsinized and split in two--half of each flask used for sequencing and half for qPCR validation post-sequencing
IL-33 activates tumor stroma to promote intestinal polyposis.
No sample metadata fields
View SamplesLeft ventricular noncompaction (LVNC) Causes prominent ventricular trabeculations and reduces cardiac systolic function. The clinical presentation of LVNC ranges from asymptomatic to heart failure. We show that germline mutations in human MIB1 (mindbomb homolog 1), which encodes an E3 ubiquitin ligase that promotes endocytosis of the NOTCH ligands DELTA and JAGGED, cause LVNC in autosomal-dominant pedigrees, with affected individuals showing reduced NOTCH1 activity and reduced expression of target genes. Functional studies in cells and zebrafish embryos and in silico modeling indicate that MIB1 functions as a dimer, which is disrupted by the human mutations. Targeted inactivation of Mib1 in mouse myocardium causes LVNC, a phenotype mimicked by inactivation of myocardial Jagged1 or endocardial Notch1. Myocardial Mib1 mutants show reduced ventricular Notch1 activity, expansion of compact myocardium to proliferative, immature trabeculae and abnormal expression of cardiac development and disease genes. These results implicate NOTCH signaling in LVNC and indicate that MIB1 mutations arrest chamber myocardium development, preventing trabecular maturation and compaction. Overall design: RNA was isolated from the ventricles of 16 WT and 16 Mib1flox; CTnT-cre hearts at E14.5 and then pooled into four replicates.
Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy.
No sample metadata fields
View SamplesKaposi sarcoma is the most common cancer in AIDS patients and is typified by red skin lesions. The disease is caused by the KSHV virus (HHV8) and is recognizable by its distinctive red skin lesions. The lesions are KSHV infected spindle cells, most commonly the lymphatic endothelial and blood vessel endothelial cells (LEC and BEC), plus surrounding stroma. Here we examine KSHVs modulation of Notch signaling using wild-type LEC cells co-cultured with DLL4 and JAG1 expressing LEC cells.
KSHV manipulates Notch signaling by DLL4 and JAG1 to alter cell cycle genes in lymphatic endothelia.
No sample metadata fields
View Sampleseffect of overexpression of GATA-6 in P19 CL6 induced cells
Wnt2 is a direct downstream target of GATA6 during early cardiogenesis.
Cell line
View SamplesThe animal piRNA pathway is a small RNA silencing system that acts in gonads and protects the genome against the deleterious influence of transposons. A major bottleneck in the field is the lack of comprehensive knowledge of the factors and molecular processes that constitute this pathway. We conducted an RNAi screen in Drosophila and identified ~50 genes that strongly impact the ovarian somatic piRNA pathway. Many identified genes fall into functional categories that indicate essential roles for mitochondrial metabolism, RNA export, the nuclear pore, transcription elongation and chromatin regulation in the pathway. Follow-up studies on two factors demonstrate the identification of components acting at distinct hierarchical levels of the pathway. Finally, we define CG2183/Gasz as a novel primary piRNA biogenesis factor in somatic and germline cells. Based on the similarities between insect and vertebrate piRNA pathways our results have far-reaching implications for the understanding of this conserved genome defense system. Overall design: Steady-state RNA levels in wild-type ovarian somatic cells (OSC) and RNAi knock-downs of the piRNA pathway components.
The genetic makeup of the Drosophila piRNA pathway.
Specimen part, Subject
View SamplesOvarian cancer patients are generally diagnosed at stage III/IV, when ascites is common. The volume of ascites positively correlates with the extent of metastasis and negatively with prognosis. Membrane GRP78, a stress-inducible endoplasmic reticulum chaperone which also appears on the plasma membrane (memGRP78) of aggressive cancers, plays a crucial role in the maintenance of embryonic stem cells. Our present study demonstrates that tumor cells isolated from ascites generated by epithelial ovarian cancer (ID8 cells) bearing mice have increased memGRP78 expression compared to ID8 cells in normal culture. We hypothesize that these ascites associated memGRP78+ cells are cancer stem-like cells (CSC) and memGRP78 is functionally important in CSCs. Supporting this hypothesis, we show that memGRP78+ cells isolated from ascites have increased sphere forming and tumor initiating abilities compared to memGRP78- cells. When the tumor microenvironment is recapitulated by adding ascites fluid to cell culture, ID8 cells express more memGRP78 and increased self-renewing ability compared to those cultured in medium alone. Moreover, compared to their counterparts cultured in normal medium, ID8 cells cultured in ascites, or isolated from ascites, show an increased expression of stem cell markers Sca-1, Snail and SOX9. Importantly, antibodies directed against the carboxy (COOH)-terminal domain of GRP78 significantly reduce the self-renewing ability of murine and human ovarian cancer cells pre-incubated with ascites, associated with a decreased phosphorylation of Akt and GSK3, and reduced level of the transcriptional factor Snail. Based on this data, we suggest that memGRP78 is a logical therapeutic target for late stage ovarian cancer.
Syngeneic Murine Ovarian Cancer Model Reveals That Ascites Enriches for Ovarian Cancer Stem-Like Cells Expressing Membrane GRP78.
Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Effects of warm ischemic time on gene expression profiling in colorectal cancer tissues and normal mucosa.
Specimen part, Disease, Disease stage, Subject, Time
View SamplesThe study outcome was to evaluate the effect of the time on normal colon mucosa samples and possibly select specific genes whose expression is time-related, that could be used as detectors of tissue degradation.
Effects of warm ischemic time on gene expression profiling in colorectal cancer tissues and normal mucosa.
Specimen part, Disease, Disease stage, Subject, Time
View Samples