A growing number of studies on gynecological cancers (GCs) have revealed potential gene markers associated either with the pathogenesis and progression of the disease on representing putative targets for therapy and treatment of cervical (CC), endometrial (EC) and vulvar cancer (VC). However, quite a little overlap is found between these data. In this study we combined data from the three GCs integrating gene expression profile analysis.
Profiling of Discrete Gynecological Cancers Reveals Novel Transcriptional Modules and Common Features Shared by Other Cancer Types and Embryonic Stem Cells.
Specimen part, Disease, Disease stage
View SamplesWe have carried out transcriptional profile analysis in macroH2A knockdown cells (Namalwa B cells and HeLa cells) and demonstrated that this histone variant plays positive and negative roles in transcription. We also demonstrated the role of macroH2A in regulating the response to Sendai Virus infection.
Composite macroH2A/NRF-1 Nucleosomes Suppress Noise and Generate Robustness in Gene Expression.
Cell line, Treatment
View SamplesThe Notch signaling pathway controls cell fates through interactions between neighboring cells by positively or negatively affecting, in a context-dependent manner, processes of proliferation, differentiation, and apoptosis1. It has been implicated in human cancer both as an oncogene and a tumor suppressor2. Here we report, for the first time, novel inactivating mutations in the Notch pathway components in over forty percent of the human bladder cancers examined. Bladder cancer is the fourth most commonly diagnosed malignancy in the US male population3. Thus far, driver mutations in the FGFR3 and less commonly RAS proteins have been identified4,5. We show that Notch activation in bladder cancer cells suppresses proliferation both in vitro and in vivo by directly upregulating dual specificity phosphatases (DUSPs), thus reducing ERK1/2 phosphorylation. In mouse models, genetic inactivation of Notch signaling leads to ERK1/2 phosphorylation resulting in tumorigenesis in the urinary tract. In recent years, the tumor suppressor role of Notch has been recognized by loss-of-function mutations identified in myeloid cancers6 as well as squamous cell carcinomas of the skin, lung7, and the head and neck8,9. Of the 4 Notch receptors (N1-4), only N1 and 2 have been implicated in human cancer.
A new tumor suppressor role for the Notch pathway in bladder cancer.
Specimen part
View SamplesThe widespread use of wireless devices during the last decades is rising the concern about the adverse health effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted from these devices. Studies are targeting on unrevealing the underlying mechanisms of RF-EMR action. The contribution of the omics high throughput approaches is a prerequisite towards this direction. In the present work, C57BL/6 adult male mice were sham-exposed (nSE=8) or whole-body exposed (nExp=8) for 2h to GSM 1800 MHz mobile phone radiation at 11 V/m average electric field intensity, and the RF-EMR effects on the hippocampal lipidome and transcriptome profile were evaluated. The data analysis of the phospholipids fatty acid residues revealed that the levels of six fatty acids (16:0, 16:1 6+7c, 18:1 9c, 20:5 w3, SFA, MUFA) were significantly altered (p<0.05) in the exposed group. The microarray data analysis demonstrated that the expression of 178 genes changed significantly (p<0.05) between the two groups with a fold change cut off of 1.5. In general, the observed changes point out the attention to a membrane remodeling response of the tissue phospholipids after non-ionizing radiation exposure, reducing the Saturated Fatty Acids (SFA) and EPA omega-3 (20:5 w3) and increasing Monounsaturated Fatty Acids (MUFA) residues and in parallel reflect an impact to genes implicated in critical biological processes, as cell cycle, DNA replication and repair, cell death, cell signaling, nervous system development and function, immune system response, lipid metabolism and cancer
Hippocampal lipidome and transcriptome profile alterations triggered by acute exposure of mice to GSM 1800 MHz mobile phone radiation: An exploratory study.
Specimen part
View SamplesThe cyclin-dependent kinase inhibitor p21WAF1/Cip1 is the prototype downstream effector of the tumor suppressor protein p53. Yet, evidence from human cancer and mice models, imply that p21WAF1/Cip1, under certain conditions, can exercise oncogenic activity. The mechanism behind this behavior is still obscure. Within this context we unexpectedly noticed, predominantly in p53 mutant human cancers, that a subset of highly atypical cancerous cells expressing strongly p21WAF1/Cip1 demonstrated also signs of proliferation. This finding suggests either tolerance to high p21WAF1/Cip1 levels or that p21WAF1/Cip1 per se guided a selective process that led to more aggressive off-springs. To address the latter scenario we employed p21WAF1/Cip1-inducible p53-null cellular models and monitored them over a prolonged time period, using high-throughput screening means. After an initial phase characterized by stalled growth, mainly due to senescence, a subpopulation of p21WAF1/Cip1 cells emerged, demonstrating increased genomic instability, aggressiveness and chemo-resistance. At the mechanistic level unremitted p21WAF1/Cip1 production saturates the CRL4CDT2 and SCFSkp2 ubiquitin ligase complexes reducing the turn-over of the replication licensing machinery. Deregulation of replication licensing triggered replication stress fuelling genomic instability. Conceptually, the above notion should be considered when anti-tumor strategies are designed, since p21WAF1/Cip1 responds also to p53-independent signals, including various chemotherapeutic compounds.
Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing.
Specimen part, Cell line
View SamplesWe used microarrays to detail the global programme of gene expression in embryonic stem cells, early differentiated embrioid bodies and effect of short-term ATRA treatment.
Activation of retinoic acid receptor signaling coordinates lineage commitment of spontaneously differentiating mouse embryonic stem cells in embryoid bodies.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression.
Cell line
View SamplesThe two most common melanoma histopathologic subtypes, superficial spreading (SSM) and nodular melanoma (NM), are believed to represent sequential phases of linear progression from radial to vertical growth. Studies suggest, however, that SSM and NM are biologically distinct. We utilized an integrative genomic approach to examine the possibility that SSM and NM are the result of independent pathways characterized by unique molecular alterations. Cell lines including SSM, NM, metastatic melanoma, and melanocyte controls were evaluated for copy number changes and differential mRNA expression using single nucleotide polymorphism array (SNP 6.0, Affymetrix) and gene array (U133A 2.0, Affymetrix). Data sets were integrated to identify copy number alterations that correlated with gene expression, and array results were validated using immunohistochemistry on human tissue microarrays (TMAs) and an external data set. The functional effect of genomic deletion was assessed by lentiviral overexpression. Integrative genomics revealed 8 genes in which NM/SSM-specific copy number alterations were correlated with NM/SSM differential gene expression (P<0.05, Spearmans rank). Pathways analysis of differentially expressed genes (N=114) showed enrichment for metabolic-related processes. SSM-specific genomic deletions (DIS3, MTAP, G3BP2, SEC23IP, USO1) were verified in an expanded panel of cell lines, and forced overexpression of MTAP in SSM resulted in reduced cell growth. Metabolism-related gene ALDH7A1 was verified as overexpressed in NM using human TMAs.The identification of recurrent genomic deletions in SSM not present in NM challenges the linear model of melanoma progression and supports the unique molecular classification of SSM and NM.
Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression.
Cell line
View SamplesMuscle injury was elicited by cardiotoxin injection into the tibialis anterior muscle. Macrophages were isolated 2 days post-injury from the regenerating muscle.
Tissue LyC6- macrophages are generated in the absence of circulating LyC6- monocytes and Nur77 in a model of muscle regeneration.
Specimen part
View SamplesWe used microarrays to identify markers predicting responder status in tocilizumab treatment in rheumatoid arthritis in 13 patients at week 0 and week 4 of treatment.
Peripheral blood gene expression and IgG glycosylation profiles as markers of tocilizumab treatment in rheumatoid arthritis.
Time
View Samples