ALTERED MERISTEM PROGRAM1 (AMP1) is a member of the M28 family of carboxypeptidases with a pivotal role in cell fate maintenance in the embryo and shoot meristem. A defect in AMP1 function results in suspensor to embryo conversion and a hypertrophic shoot meristem forming ectopic stem cell pools. However, so far the role of AMP1 in shoot development could not be assigned to a specific molecular pathway nor is its biochemical function resolved. Double mutants in CYP78A5 and CYP78A7 develop a similar set of cell fate defects. To further assess whether this phenotypic overlap is also depicted in a congruency at the global gene expression level, we analyzed the transcriptomic responses of both genotypes
AMP1 and CYP78A5/7 act through a common pathway to govern cell fate maintenance in Arabidopsis thaliana.
Age, Specimen part
View SamplesHypoxia triggers aggressive cancer growth and contributes to chemotherapy resistance. Novel therapeutic strategies aim at targeting hypoxia activated signaling pathways. Tumor hypoxia not only affects neoplastic tumor cells but also the surrounding stroma cells. Therefore, a novel ex vivo model was established, which allows the study of hypoxia effects in fragments of non-small cell lung cancer (NSCLC) with preserved tumor microenvironment and 3D-structure. Microarray analysis identified 107 significantly regulated genes with at least two-fold expression change in hypoxic compared to normoxic fragments. However, only four genes were significantly regulated in both subtypes, adenocarcinoma and squamous cell carcinoma. The hypoxic regulation of these four genes was verified in an independent set using quantitative PCR.
Hypoxia increases membrane metallo-endopeptidase expression in a novel lung cancer ex vivo model - role of tumor stroma cells.
Specimen part, Treatment
View SamplesBrassinosteroids (BRs) are growth-promoting plant hormones that play a role in abiotic stress responses, but molecular modes that enable this activity remain largely unknown. Here we show that BRs participate in the regulation of freezing tolerance. BR signaling-defective mutants of Arabidopsis thaliana were hypersensitive to freezing before and after cold acclimation. The constitutive activation of BR signaling, in contrast, enhanced freezing resistance. Evidence is provided that the BR-controlled basic helixloophelix transcription factor CESTA (CES) can contribute to the constitutive expression of the C-REPEAT/DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR (CBF) transcriptional regulators that control cold responsive (COR) gene expression. In addition, CBF-independent classes of BR-regulated COR genes are identified that are regulated in a BR- and CES-dependent manner during cold acclimation. A model is presented in which BRs govern different cold-responsive transcriptional cascades through the posttranslational modification of CES and redundantly acting factors. This contributes to the basal resistance against freezing stress, but also to the further improvement of this resistance through cold acclimation.
Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants.
Age, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The Small Molecule Hyperphyllin Enhances Leaf Formation Rate and Mimics Shoot Meristem Integrity Defects Associated with AMP1 Deficiency.
Specimen part, Treatment
View SamplesALTERED MERISTEM PROGRAM1 (AMP1) is a member of the M28 family of carboxypeptidases with a pivotal role in plant development and stress adaptation. Its most prominent mutant defect is a unique hypertrophic shoot phenotype combining a strongly increased organ formation rate with enhanced meristem size and the formation of ectopic meristem poles. However, so far the role of AMP1 in shoot development could not be assigned to a specific molecular pathway nor is its biochemical function resolved. We used a chemical genetic approach to identify the drug hyperphyllin (HP), which specifically mimics the shoot defects of amp1, including plastochron reduction and enlargement and multiplication of the shoot meristem. To further assess whether hyperphyllin acts in an AMP1-dependent manner we compared the transcriptonal responses of hyperphyllin-treated wild-type and amp1 mutant seedlings.
The Small Molecule Hyperphyllin Enhances Leaf Formation Rate and Mimics Shoot Meristem Integrity Defects Associated with AMP1 Deficiency.
Specimen part, Treatment
View SamplesALTERED MERISTEM PROGRAM1 (AMP1) is a member of the M28 family of carboxypeptidases with a pivotal role in plant development and stress adaptation. Its most prominent mutant defect is a unique hypertrophic shoot phenotype combining a strongly increased organ formation rate with enhanced meristem size and the formation of ectopic meristem poles. However, so far the role of AMP1 in shoot development could not be assigned to a specific molecular pathway nor is its biochemical function resolved. We used a chemical genetic approach to identify the drug hyperphyllin (HP), which specifically mimics the shoot defects of amp1, including plastochron reduction and enlargement and multiplication of the shoot meristem. To further assess whether hyperphyllin acts in an AMP1-dependent manner we compared the transcriptonal responses of hyperphyllin-treated wild-type Arabidopsis seedlings with those of untreated amp1 mutant seedlings.
The Small Molecule Hyperphyllin Enhances Leaf Formation Rate and Mimics Shoot Meristem Integrity Defects Associated with AMP1 Deficiency.
Specimen part, Treatment
View SamplesKRAS mutations are the ost abundand driver mutations found in lung adenocarcinoma patients. Unfortunately, there are no clinical approved inhibitors available, to directly target mutant forms of KRAS. The aim of the study was to unravel the impact of upstream Egfr activation in signaling of mutated K-ras. We found that upregulation of G12D mutant Kras induced genes was significantly impaired when Egfr was knocked out. Our data suggests that signaling of mutant Kras depends on upstream activation. This finding may be exploited therapeutically by targeting EGFR in KRAS mutant patients. Overall design: We isolated mouse alveolar type II cells and induced the Kras G12D mutation, with and without concomitant Egfr knockout, in vitro. Cells lysates were analyzed 5 days following transgene induction.
JAK-STAT inhibition impairs K-RAS-driven lung adenocarcinoma progression.
Specimen part, Cell line, Subject
View SamplesMiR-221 overexpression leads to activation of apoptosis, growth arrest and reduced invasivness in PCa cells. Interaction of miR-221 with potential target genes was analyzed by a genome wide expression profiling.. Regulation of selected genes and proteins identified in the gene array analysis was confirmed by Real Time RT-PCR assay (IRF1, IRF2 SOCS3, STAT1), and Western Blotting. In total, 282 genes were upregulated and 64 downregulated based on a more than 2-fold difference to untransfected PC-3 cells. Regulated genes are involved in apoptosis, hemostasis, oxidative stress response, tumorigenesis and inflammation. We confirmed dysregulation of IRF-2 SOCS3, STAT1,IRF9. These results indicate that miR-221 overexpression might lead to activation of the JAK/STAT pathway and downregulation of miR-221 might contribute to tumorigenesis in PCa cells.
Survival in patients with high-risk prostate cancer is predicted by miR-221, which regulates proliferation, apoptosis, and invasion of prostate cancer cells by inhibiting IRF2 and SOCS3.
Cell line
View SamplesThe immune mechanisms that control resistance vs. susceptibility to mycobacterial infection in humans were investigated by studying leprosy skin lesions, the site where the battle between the host and the pathogen is joined. Using an integrative genomics approach, we found an inverse correlation between of IFN-beta and IFN-gamma gene expression programs at the site of disease. The Type II IFN, IFN-gamma and its downstream vitamin D-dependent antimicrobial genes were preferentially expressed in the lesions from patients with the self-healing tuberculoid form of the disease and mediated antimicrobial activity against the pathogen, Mycobacterium leprae in vitro. In contrast, the Type I IFN, IFN-beta and its downstream genes, including IL-27 and IL-10, were induced in monocytes by M. leprae in vitro, and were preferentially expressed in the lesions of disseminated and progressive lepromatous form. The IFN-gamma induced macrophage antimicrobial response was inhibited by IFN-beta/IL-10, by a mechanism involving blocking the generation of bioactive 1,25-dihyroxy vitamin D as well as inhibiting induction of antimicrobial peptides cathelicidin and DEFB4. The ability of IFN-B to inhibit the IFN-gamma induced vitamin D pathway including antimicrobial activity was reversed by neutralization of IL-10, suggesting a possible target for therapeutic intervention. Finally, a common IFN-beta and IL-10 gene signature was identified in both the skin lesions of leprosy patients and in the peripheral blood of active tuberculosis patients. Together these data suggest that the ability of IFN-beta to downregulate protective IFN-gamma responses provides one general mechanism by which some bacterial pathogens of humans evade protective host responses and contribute to pathogenesis.
Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses.
Specimen part, Subject
View SamplesPrimary pneumocytes from KRas;Atg5fl/+ and KRas;Atg5fl/fl littermates were cultured for 48 hours and infected with AdCre-GFP to induce expression of the KrasG12D oncogene and concomitant Atg5 deletion. The transcriptional profile of those cells was determined by mRNA sequencing and uncovered differential expression in cellular movement, inflammatory response and oxidative stress response. Overall design: Comparison of transcriptomes from KRas;Atg5fl/+ and KRas;Atg5fl/fl pneumocytes
A dual role for autophagy in a murine model of lung cancer.
Specimen part, Subject
View Samples