Signalling via the colony stimulating factor 1 receptor (CSF1R) controls the survival, differentiation and proliferation of macrophages which are a source of the somatic growth factor insulin growth factor 1 (IGF1). Treatment of newborn mice with CSF1 has previously been shown to produce an increase in somatic growth rate and we hypothesised that treatment of neonatal low birth weight (LBW) rats with CSF1 would do the same. Growth rates were not affected, yet CSF1 treatment caused an unexpectedly large, but reversible increase in liver size and hepatic fat deposition in both normal and LBW rats. By transcriptional profiling, we have highlighted numerous CSF1-regulated genes known to be involved in lipid droplet formation in the liver and novel candidate genes for further investigation. In contrast to mice and weaner pigs, CSF1 treatment did not increase hepatocyte proliferation in neonatal rats, rather the data were consistent with increased macrophage proliferation instead. This suggests that Kupffer cells promote lipid accumulation in neonates and treatment to ablate CSF1R signalling may reverse lipid accumulation in the liver.
Macrophage colony-stimulating factor increases hepatic macrophage content, liver growth, and lipid accumulation in neonatal rats.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The Transcription Factor ZEB2 Is Required to Maintain the Tissue-Specific Identities of Macrophages.
Specimen part
View SamplesMicroarray, Bulk RNA Sequencing and Single cell RNA Sequencing of different murine tissue-resident macrophage populations to assess role of Zeb2 and LXRa
The Transcription Factor ZEB2 Is Required to Maintain the Tissue-Specific Identities of Macrophages.
Specimen part
View SamplesWe used microarray to examine changes in gene expression in the absence of Csf1r in the brain and spleen.
Pleiotropic Impacts of Macrophage and Microglial Deficiency on Development in Rats with Targeted Mutation of the <i>Csf1r</i> Locus.
Sex
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer.
Specimen part, Cell line, Treatment
View SamplesTo identify direct tumor mRNA targets of miR-34a, tumor RNAs isolated from whole tumors from animals treated with negative control and MRX34
Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer.
Specimen part, Cell line, Treatment
View SamplesAlthough localized to the mineralized matrix of bone, osteocytes are able to respond to systemic factors such as the calciotropic hormones 1,25(OH)2D3 and PTH. In the present studies, we examine the transcriptomic response to PTH in an osteocyte cell model and found that this hormone regulated an extensive panel of genes. Surprisingly, PTH uniquely modulated two cohorts of genes, one that was expressed and associated with the osteoblast to osteocyte transition and the other a cohort that was expressed only in the mature osteocyte. Interestingly, PTH's effects were largely to oppose the expression of differentiation-related genes in the former cohort, while potentiating the expression of osteocyte-specific genes in the latter cohort. A comparison of the transcriptional effects of PTH with those obtained previously with 1,25(OH)2D3 revealed a subset of genes that was strongly overlapping. While 1,25(OH)2D3 potentiated the expression of osteocyte-specific genes similar to that seen with PTH, the overlap between the two hormones was more limited. Additional experiments identified the PKA-activated phospho-CREB (pCREB) cistrome, revealing that while many of the differentiation-related PTH regulated genes were apparent targets of a PKA-mediated signaling pathway, a reduction in pCREB binding at sites associated with osteocyte-specific PTH targets appeared to involve alternative PTH activation pathways. That pCREB binding activities positioned near important hormone-regulated gene cohorts were localized to control regions of genes was reinforced by the presence of epigenetic enhancer signatures exemplified by unique modifications at histones H3 and H4. These studies suggest that both PTH and 1,25(OH)2D3 may play important and perhaps cooperative roles in limiting osteocyte differentiation from its precursors while simultaneously exerting distinct roles in regulating mature osteocyte function. Our results provide new insight into transcription factor-associated mechanisms through which PTH and 1,25(OH)2D3 regulate a plethora of genes important to the osteoblast/osteocyte lineage. Overall design: Fully differentiated IDG-SW3 cells were treated in biological triplicate with 100nM PTH for 24 hours prior to mRNA isolation and sequencing. Vehicle treated samples were previously published in GSE54783: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1323967 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1323968 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1323969
The parathyroid hormone-regulated transcriptome in osteocytes: parallel actions with 1,25-dihydroxyvitamin D3 to oppose gene expression changes during differentiation and to promote mature cell function.
No sample metadata fields
View SamplesPaired-end sequencing of Vector and H-Ras expressing cell lines: p53-del and WT-p53 We found that activated forms of H-Ras and PIK3CA oncogene lead to repression of p63, a p53 family member. They also lead to induction of EMT, a cancer-related process. Our results suggest that, through Ras regulation of p63, this oncogene can drive mammary epithelial cells towards greater invasive ability. Overall design: 4 samples analyzed with 3 replicates each, control samples for each H-Ras line are the Vector cell line created at the same time
Repression of p63 and induction of EMT by mutant Ras in mammary epithelial cells.
Cell line, Subject
View SamplesWe differentiated the murine IDG-SW3 cell line for 28 days until the cells displayed a mature osteocyte-like phenotype. Triplicate cultures of the IDG-SW3 cells were then treated with 50nM PTH (1-34) or vehicle control (PBS) for 24 hours. RNA was harvested from the cultures and used to perform RNA Seq analysis. We found that many genes previously shown to be markers of the osteocyte phenotype were strongly downregulated in response to PTH treatment. Furthermore, we found that genes known to inhibit cell motility were downregulated in response to PTH, whereas genes promoting motility were upregulated. This corresponds to the increased cell motility observed in PTH-treated IDG-SW3 cell cultures. Therefore, PTH induces a switch in mature IDG-SW3 cells from a osteocyte-like cell to a more motile phenotype. Overall design: RNA expression profiles of control and PTH-treated 28 day differentiated IDG-SW3 cells.
Parathyroid Hormone Induces Bone Cell Motility and Loss of Mature Osteocyte Phenotype through L-Calcium Channel Dependent and Independent Mechanisms.
No sample metadata fields
View SamplesRice (Oryza sativa, ssp. Japonica, cv. Nipponbare 1) plants were grown in a Conviron PGR 15 growth chamber using precise control of temperature, light, and humidity.<br></br>Diurnal (driven) conditions included 12L:12D light cycles and 31C/20C thermocycles in three different combinations. These were: photocycles (LDHH), 12 hrs. light (L)/12 hrs. dark (D) at a constant temperature (31C; HH); photo/thermocycles (LDHC): 12 hrs. light (L) /12 hrs. dark (D) with a high day temperature (31C) and a low night temperature (20C); and thermocycles (LLHC): continuous light (LL) with 12 hrs. high/12 hrs. low temperature (31C, day; 20C, night). Light intensity and relative humidity were 1000 micromol m-2s-2 and 60%, respectively.<br></br>Three-month-old rice plants were entrained for at least one week under the respective condition prior to initiation of each experiment. Leaves and stems from individual rice plants were collected every four hours for 48 hrs in driven (diurnal) conditions followed by a two day freerun spacer under continuous light/temperature followed by two additional days of sampling under the same continuous free run condition.<br></br>
Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules.
Age, Specimen part, Time
View Samples