As recently reported by our group, we performed miRNA and gene expression profiling of CD34+ hematopoietic stem/progenitor cells (HSPCs) isolated from 42 PMF patient samples compared with 31 healthy controls. Integrative analysis of these profiles by means of Ingenuity Pathway Analysis (IPA) allowed the identification of several aberrantly regulated miRNA-mRNA target pairs organized in interaction networks. In particular, our results highlighted the up-regulation of miR-494-3p in CD34+ cells from PMF patients (Norfo R et al, Blood, 2014). Interestingly, among the most upregulated miRNAs, miR-494-3p emerges as being associated to the highest number of downregulated target mRNAs. In order to understand the biological role of miR-494-3p during the hematopoietic commitment and differentiation, we overexpressed this miRNA in cord blood (CB) derived-CD34+ cells. Cells were electroporated with either miR-494-3p miRNA mimic (mimic miR-494) or a negative control mimic (mimic Neg CTR). qRT-PCR confirmed miR-494-3p overexpression 24h and 4 days after transfection (RQ SEM, 512.60 137.37, p<.01, and 20.63 3.03, p<.01, respectively).
miR-494-3p overexpression promotes megakaryocytopoiesis in primary myelofibrosis hematopoietic stem/progenitor cells by targeting SOCS6.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Lipid Nanoparticle-Mediated Delivery of Anti-miR-17 Family Oligonucleotide Suppresses Hepatocellular Carcinoma Growth.
Cell line
View SamplesTo functionally characterize the role of miR-17 family in HCC, lentiviral vector-based miR inhibitor TuD was used to inhibit miR-17 family of microRNAs in HepG2 and SK-Hep1 HCC cell lines Overall design: Methods: HepG2 and SK-Hep1 HCC cell lines were acquired from American Type Culture Collection (ATCC) and miR-17 TuD or NC TuD expressing lines were generated. mRNA profiling of miR-17 TuD or NC TuD expressing samples was performed using Illumina NGS. Total RNA was extracted as per manufacturer’s instructions (RNeasy kit, Qiagen). RNA quality was assessed using BioAnalyzer (Agilent). mRNA expression profiles were determined using next-generation sequencing (NGS) on the Illumina HiSeq 2000 platform producing 50bp paired-end reads. Bowtie/TopHat suites were used to align the reads to mouse genome or transcriptome and RSEM were used to quantify gene abundances. Gene level counts were then normalized with the R/Bioconductor package limma using the voom/variance stabilization method.
Lipid Nanoparticle-Mediated Delivery of Anti-miR-17 Family Oligonucleotide Suppresses Hepatocellular Carcinoma Growth.
Cell line, Subject
View SamplesTo functionally characterize the role of miR-17 family in HCC, lentiviral vector-based miR inhibitor TuD was used to inhibit miR-17 family of microRNAs in Hep3B cell line
Lipid Nanoparticle-Mediated Delivery of Anti-miR-17 Family Oligonucleotide Suppresses Hepatocellular Carcinoma Growth.
Cell line
View SamplesPh-negative myeloproliferative neoplasms (MPNs) are characterized by many somatic mutations which have already been shown useful in the prognostic assessment of MPN patients. Moreover, aberrant microRNA (miRNA) expression seems to add to the molecular complexity of MPNs, as specific miRNA signatures capable of discriminating MPN cells from those of normal donors were previously reported. In order to have a comprehensive picture of miRNA deregulation and its relationship with differential gene expression in primary myelofibrosis (PMF) cells, we obtained gene- (GEP) and miRNA expression profiles (miEP) of CD34+ cells from 31 healthy donors and 42 PMF patients using Affymetrix technology (HG-U219 and miRNA 2.0 arrays). Differentially expressed genes (DEG) and miRNAs (DEM) were sorted out by means of Partek Genomic Suite vs 6.6. Since each miRNA can target many mRNAs while a single mRNA can be targeted by multiple miRNAs, we performed Integrative Analysis (IA) by means of Ingenuity Pathway Analysis (IPA) to untangle this combinatorial complexity. In particular, IPA points out DEM-DEG pairs among experimentally validated interactions from TarBase, miRecords and Ingenuity Expert Findings as well as predicted microRNA-mRNA interactions from TargetScan. IPA microRNA Target Filter was then employed to select only the DEM-DEG pairs showing an anti-correlated expression pattern and to build regulatory networks. Finally, 3'UTR luciferase reporter assays were performed to validate IPA predicted miRNA-mRNA interactions.
miRNA-mRNA integrative analysis in primary myelofibrosis CD34+ cells: role of miR-155/JARID2 axis in abnormal megakaryopoiesis.
Specimen part, Disease
View SamplesJARID2 is a chromatin remodeler, member of the Jumonji family of transcription factor genes that belongs to the polycomb repressive complex 2 (PRC2) (Peng JC et al. Cell 2009) and is frequently deleted in leukemic transformation of chronic myeloid malignancies (Puda A et al. Am J Hematol. 2012). In this work, we compared gene expression profile (GEP) of CD34+ cells from Primary Myelofibrosis (PMF) patients with healthy donors and we found JARID2 among downregulated genes. In addition, integrative analysis of gene and miRNA profiles highlighted JARID2 as a shared target of several miRNAs aberrantly expressed in PMF CD34+ cells. Since the role of JARID2 in normal and malignant hematopoiesis has never been investigated, we performed JARID2 silencing experiments on normal Cord Blood (CB) CD34+ cells to evaluate its involvement in proliferation and commitment. Therefore, CD34+ cells were transfected with a mixture of 3 Silencer Select siRNAs targeting JARID2 mRNA and with a non-targeting siRNA as control (NegCTR). The expression level of JARID2 in control samples and JARID2-siRNA cells was assessed by QRT-PCR at 24h (RQ 0,2 SEM 0,036, p <.001) and 48h (RQ 0,32 SEM 0,026, p<.001) after the last nucleofection.
miRNA-mRNA integrative analysis in primary myelofibrosis CD34+ cells: role of miR-155/JARID2 axis in abnormal megakaryopoiesis.
Specimen part, Treatment
View SamplesThe goal of this gene expression profiling experiment was to identify the entire set of transcription factors expressed during late pupal wing development (~80h APF) when pigmentation genes are expressed
Emergence and diversification of fly pigmentation through evolution of a gene regulatory module.
Specimen part
View SamplesIncreasing evidence suggests that defective RNA processing contributes to the development of amyotrophic lateral sclerosis (ALS). This may be especially true for ALS caused by a repeat expansion in C9orf72 (c9ALS), in which the accumulation of RNA foci and dipeptide-repeat proteins are expected to modify RNA metabolism. We report extensive alternative splicing (AS) and alternative polyadenylation (APA) defects in the cerebellum of c9ALS cases (8,224 AS, 1,437 APA), including changes in ALS-associated genes (e.g. ATXN2 and FUS), and cases of sporadic ALS (sALS; 2,229 AS, 716 APA). Furthermore, hnRNPH and other RNA-binding proteins are predicted as potential regulators of cassette exon AS events for both c9ALS and sALS. Co-expression and gene-association network analyses of gene expression and AS data revealed divergent pathways associated with c9ALS and sALS. Overall design: Examination transcriptiome profiles in c9orf72-associated ALS, sporadic ALS and healthy control
Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients.
No sample metadata fields
View SamplesAnalysis of Drosophila melanogaster early embryos (pre-zygotic genome activation) following the germ line-specific depletion of the dMLL3/4 histone methyltransferase (also known as Trr). These results provide insight into the molecular mechanisms responsible for the assembly of the zygotic genome at fertilization.
The Trithorax group protein dMLL3/4 instructs the assembly of the zygotic genome at fertilization.
Specimen part
View Samplesp21-activated kinases (Paks) play an important role in oncogenic signaling pathways, and have therefore been considered as potential therapeutic targets in various cancers. Most studies of Pak function employ loss of function methods such as gene knock-out or knock-down, but these approaches result in loss of both the enzymatic and scaffolding properties of these proteins, and thus may not reflect the effects of small molecule inhibitors that block catalytic function. In this study we use a new transgenic mouse model in which a specific peptide inhibitor of Group I Paks (Pak1, -2, and -3) is conditionally expressed in response to Cre recombinase. Using this model, we show that inhibition of endogenous Pak function impedes the transition of adenoma to carcinoma in an Apc-driven mouse model of colorectal cancer. These effects are mediated by inhibition of Wnt signaling through reduced ß-catenin activity as well as suppression of an epithelial-mesenchymal transition program mediated by miR-200 and Snai1. These results highlight the potential therapeutic role of Pak1 inhibitors in colorectal cancer and suggest new therapeutic strategies in this disease. Overall design: We generated a targeted transgenic mouse carrying a conditionally activated PID allele at the Rosa26 locus, and showed that expression of this allele effectively inhibited the activity of Group I Paks in vivo. To assess the global molecular effects of Pak inhibition in Apc-null CRC cells, we next explored the effect of repressing Pak activity on transcription. Total RNA was extracted from PID+ and PID- cells and RNA-sequencing was preformed, followed by pathway analysis and qPCR validation for selected mRNAs.
Group I Paks are essential for epithelial- mesenchymal transition in an Apc-driven model of colorectal cancer.
Treatment, Subject
View Samples