This SuperSeries is composed of the SubSeries listed below.
Extrinsic Phagocyte-Dependent STING Signaling Dictates the Immunogenicity of Dying Cells.
Specimen part, Cell line
View SamplesThe ability of dying cells to activate antigen presenting cells (APCs) is carefully controlled to avoid unwarranted inflammatory responses. Here we show that engulfed cells only containing cytosolic dsDNA species (viral or synthetic) or cyclic di-nucleotides (CDNs) are able to stimulate APCs, via extrinsic STING-signaling.
Extrinsic Phagocyte-Dependent STING Signaling Dictates the Immunogenicity of Dying Cells.
Specimen part
View SamplesTransfected double strand DNA were required for the efficient activation of STING to activate innate immune cytokine.
Extrinsic Phagocyte-Dependent STING Signaling Dictates the Immunogenicity of Dying Cells.
Cell line
View SamplesSpermatogenesis has been well studied in rodents and invertebrates, but remains poorly understood in humans. As a step towards illuminating human spermatogenesis, we used single-cell RNA-sequencing (scRNAseq) analysis to analyze neonatal and adult human testes. Clustering analysis of neonatal testes revealed 3 germ subsets, including cells with characteristics of primordial germ cells (PGCs), and more differentiated cells with gene expression profiles similar with adult spermatogonial stem cells (SSCs). We identified markers for these neonatal subsets, including protein markers for the PGC-like (PGCL) subset. Clustering analysis of the adult testis revealed 9 germ and 3 somatic cell subsets. Among the germ cell clusters are 4 undifferentiated spermatogonia (SPG) states, each marked by specific genes. One of the SPG states has characteristics suggesting it is enriched for SSCs. We identified protein markers specific for this state, including cell-surface proteins that we used to enrich for these cells. We mapped the timeline of male germ cell development from PGCs through fetal germ cells to differentiating adult SPG stages. We also defined somatic cell subsets in the human testis and traced their developmental trajectories. Together, our data provides a blueprint for understanding the development of the male germline and supporting somatic cells in humans. The germ cell subset markers we identified are candidates to be used for clinical applications, including SSC therapy for treating infertility. Overall design: Single cell sequencing from two neonatal and two adult testicular cells was performed. Cells were either enriched for ITGA6 expression or unfractionated before GEM capture
The Neonatal and Adult Human Testis Defined at the Single-Cell Level.
Age, Specimen part, Subject
View SamplesSpecific vulnerability of neurons in the human entorhinal cortex has been associated with the onset of disease.
Differential gene expression analysis of human entorhinal cortex support a possible role of some extracellular matrix proteins in the onset of Alzheimer disease.
Specimen part
View SamplesWe report the effect of DKK1 treatment during culture on the length and transcriptome of embryos on day 15 of development, supporting the notion that changes early in development affect later stages of development. Overall design: Bovine embryos were produced in vitro and exposed to either 0 or 100 ng/ml DKK1 from day 5 to 7 of culture. Embryos were transferred on day 7 and recovered on day 15 for evaluation of length and transciptome
Dickkopf-related protein 1 is a progestomedin acting on the bovine embryo during the morula-to-blastocyst transition to program trophoblast elongation.
Treatment, Subject
View SamplesProgrammed mutagenesis of the immunoglobulin locus of B-lymphocytes during class switch recombination and somatic hypermutation requires RNA polymerase II (RNA polII) transcription complex dependent targeting of the DNA mutator, Activation Induced cytidine Deaminase (AID). AID deaminates cytidine residues on substrate sequences in the immunoglobulin (Ig) locus via a transcription-dependent mechanism and this activity is stimulated by the RNA polII stalling co-factor Spt5 and the eleven-subunit cellular non-coding RNA 3’-5’ exonucleolytic processing complex, RNA exosome. The mechanism by which the RNA exosome recognizes immunoglobulin locus RNA substrates to stimulate AID DNA deamination activity on its in vivo substrate sequences is an important question. Here we report that E3-ubiquitin ligase Nedd4 destabilizes AID-associated RNA polII by a ubiquitination event leading to generation of 3’-end free RNA exosome RNA substrates at the Ig locus and other AID target sequences genome-wide. Using highthrough-out RNA sequencing technology, we find that lack of Nedd4 activity in B cells leads to accumulation of RNA exosome substrates at AID target genes. Moreover, we find that Nedd4-deficient B cells are inefficient in undergoing class switch recombination. Taken together, our study links non-coding RNA processing following RNA polymerase II pausing with regulation of the mutator AID protein. Our study also identifies Nedd4 as a regulator of non-coding RNA that are generated by stalled RNA polII genome-wide. Overall design: Splenic B cells from Nedd4+/+ and Nedd4-/- B cells fetal liver chimeric mice were were stimulated in culture for IgG1 CSR. Total RNA was isolated and evaluated with whole genome RNA-seq
E3-ubiquitin ligase Nedd4 determines the fate of AID-associated RNA polymerase II in B cells.
Specimen part, Subject
View SamplesWe show the molecular and functional characterization of a novel population of lineage-negative CD34-negative (Lin- CD34-) hematopoietic stem cells (HSCs) from chronic myelogenous leukemia (CML) patients at diagnosis. Molecular caryotyping and quantitative analysis of BCR/ABL transcript demonstrated that about one third of CD34- was leukemic. CML CD34- cells showed kinetic quiescence and limited clonogenic capacity. However, stroma-dependent cultures and cytokines induced CD34 expression on some HSCs, cell cycling, acquisition of clonogenic activity and increased expression of BCR/ABL transcript. CML CD34- cells showed an engraftment rate in immunodeficient mice similar to that of CD34+ cells. Gene expression profiling revealed the down-regulation of cell cycle arrest genes together with genes involved in antigen presentation and processing, while the expression of angiogenic factors was strongly up-regulated when compared to normal counterparts. Flow cytometry analysis confirmed the significant down-regulation of HLA class I and II molecules in CML CD34-cells. Increasing doses of imatinib mesilate (IM) did not affect fusion transcript levels, BCR-ABL kinase activity and the clonogenic efficiency of CML CD34- cells as compared to leukemic CD34+cells.
Molecular and functional analysis of the stem cell compartment of chronic myelogenous leukemia reveals the presence of a CD34- cell population with intrinsic resistance to imatinib.
No sample metadata fields
View SamplesObesity is a strong risk factor for the development of type 2 diabetes. We have previously reported that in adipose tissue of obese (ob/ob) mice, the expression of adipogenic genes is decreased. When made genetically obese, the BTBR mouse strain is diabetes susceptible and the C57BL/6J (B6) strain is diabetes resistant. We used DNA microarrays and RT-PCR to compare the gene expression in BTBR-ob/ob versus B6-ob/ob mice in adipose tissue, liver, skeletal muscle, and pancreatic islets. Our results show: 1) there is an increased expression of genes involved in inflammation in adipose tissue of diabetic mice; 2) lipogenic gene expression was lower in adipose tissue of diabetes-susceptible mice, and it continued to decrease with the development of diabetes, compared with diabetes-resistant obese mice; 3) hepatic expression of lipogenic enzymes was increased and the hepatic triglyceride content was greatly elevated in diabetes-resistant obese mice; 4) hepatic expression of gluconeogenic genes was suppressed at the prediabetic stage but not at the onset of diabetes; and 5) genes normally not expressed in skeletal muscle and pancreatic islets were expressed in these tissues in the diabetic mice. We propose that increased hepatic lipogenic capacity protects the B6-ob/ob mice from the development of type 2 diabetes. Diabetes 52:688700, 2003
Gene expression profiles of nondiabetic and diabetic obese mice suggest a role of hepatic lipogenic capacity in diabetes susceptibility.
Sex, Age
View SamplesSRSF2 is an RNA binding protein that plays important roles in splicing of mRNA precursors. Mutations in SRSF2 are frequently found in patients with myelodysplastic syndromes and certain leukemias, but how they affect SRSF2 function has only begun to be examined. Here we used CRISPR/Cas9 to introduce the P95H mutation to SRSF2 in K562 leukemia cells, generating an isogenic model so that splicing alterations can be attributed solely to mutant SRSF2. We found that SRSF2 (P95H) misregulates 548 splicing events (<1% of total). Of these, 374 involve the inclusion of cassette exons, and the inclusion was either increased (206) or decreased (168). We detected a specific motif (UCCA/UG) enriched in the more included exons and a distinct motif (UGGA/UG) in the more excluded exons. RNA gel shift assays showed that a mutant SRSF2 derivative bound more tightly than its wild-type counterpart to RNA sites containing UCCAG, but less tightly to UGGAG sites. The pattern of exon inclusion or exclusion thus correlated in most cases with stronger or weaker RNA binding, respectively. We further show that the P95H mutation does not affect other functions of SRSF2, i.e., protein-protein interactions with key splicing factors. Our results thus demonstrate that the P95H mutation positively or negatively alters the binding affinity of SRSF2 for cognate RNA sites in target transcripts, leading to misregulation of exon inclusion. Our findings not only shed light on the mechanism of the disease-associated SRSF2 mutation in splicing regulation, but also reveal a group of mis-spliced mRNA isoforms for potential therapeutic targeting. Overall design: Examination of differentially spliced events in K562 CRISPR cell clones (with wild-type or mutant SRSF2) by RNA sequencing
Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities.
No sample metadata fields
View Samples