This SuperSeries is composed of the SubSeries listed below.
Dramatic changes in 67 miRNAs during initiation of first wave of spermatogenesis in Mus musculus testis: global regulatory insights generated by miRNA-mRNA network analysis.
Specimen part
View SamplesGene expression during spermatogenesis is highly variable and this differential pattern is very important for the successive culmination of different stages of the process, leading to production of the male gamete. Taking the time window of first wave of spermatogenesis, we did a microarray profiling of total testicular transcriptome in mouse and found several significant patterns of variable gene expression, forming upregulated and downregulated clusters among the three stages analyzed here.
Dramatic changes in 67 miRNAs during initiation of first wave of spermatogenesis in Mus musculus testis: global regulatory insights generated by miRNA-mRNA network analysis.
Specimen part
View SamplesWe used microarrays to detail the global program of gene expression underlying rRNA processing gene regulation during heat shock. PBF1 is YBL054W (TOD6) and PBF2 is YER088C (DOT6).
High-resolution DNA-binding specificity analysis of yeast transcription factors.
No sample metadata fields
View SamplesKCL-22 is a chronic myeloid leukemia (CML) cell line derived from a patient in blast crisis phase and harbors the BCR-ABL translocation. The catalytic (ATP-competitive) BCR-ABL inhibitors imatinib and nilotinib have dramatically improved CML patient outcome, but the development of resistance remains a clinical challenge. The recent identification of allosteric BCR-ABL inhibitors, such as GNF-2, which target the enzyme by binding to the myristoyl pocket rather than catalytic site of ABL1, may provide a strategy to broadly overcome resistance to the class of ABL1 ATP competitive inhibitors. We therefore wanted to use the ClonTracer barcoding system to compare the clonal responses of KCL-22 to imatinib, nilotinib and GNF-2. RNA-seq was employed to characterize genetic alterations and gene expression signatures in the pooled cell populations resistant to BCR-ABL inhibitors as well as single clones showing differential response to the three inhibitors. Overall design: mRNA profiling of the subpopulations and single clones of human CML cell line KCL-22 that contribute to BCR-ABL inhibitor resistance
Studying clonal dynamics in response to cancer therapy using high-complexity barcoding.
No sample metadata fields
View SamplesThe non-small cell lung cancer (NSCLC) cell line HCC827 harbors an activating EGFR mutation (exon 19 deletion) that confers sensitivity to the FDA-approved EGFR inhibitor erlotinib. By applying the ClonTracer barcoding system, we were able to show the presence of pre-existing sub-populations in HCC827 that contribute to erlotinib resistance. Prior studies implicated that MET amplification confers resistance to erlotinib in this cell line. Therefore we examined the effects of the c-Met inhibitor crizotinib on the barcoded HCC827 population when treated either sequentially or simultaneously with both inhibitors. Despite the significant reduction in barcode complexity, the erlotinib/crizotinib combination treatment failed to eradicate all of the resistant clones implying the presence of an erlotinib/crizotinib dual resistant subpopulation. We performed transcriptome profiling (RNA-seq) to elucidate the potential resistance mechanisms of the dual resistant subpopulation in comparison to vehicle-treated or single agent erlotinib-resistant HCC827 cell populations as controls. Overall design: mRNA profiling of the subpopulations of human NSCLC cell line HCC827 that contribute to EGFR inhibitor erlotinib and MET inhibitor crizotinib resistance
Studying clonal dynamics in response to cancer therapy using high-complexity barcoding.
No sample metadata fields
View SamplesAlthough mechanisms of acquired resistance of EGFR mutant non-small cell lung cancers to EGFR inhibitors have been identified, little is known about how resistant clones evolve during drug therapy. Here, we observe that acquired resistance caused by the T790M gatekeeper mutation can occur either by selection of pre-existing T790M clones or via genetic evolution of initially T790M-negative drug tolerant cells. The path to resistance impacts the biology of the resistant clone, as those that evolved from drug tolerant cells had a diminished apoptotic response to third generation EGFR inhibitors that target T790M EGFR; treatment with navitoclax, an inhibitor of BCL-XL and BCL-2 restored sensitivity. We corroborated these findings using cultures derived directly from EGFR inhibitor-resistant patient tumors. These findings provide evidence that clinically relevant drug resistant cancer cells can both pre-exist and evolve from drug tolerant cells, and point to therapeutic opportunities to prevent or overcome resistance in the clinic. Overall design: Examination of mRNA levels of PC9 parental, drug-tolerant, PC9-GR2 and PC9-GR3 cells after treatment with vehicle, gefitinib or WZ4002 for 24 hours.
Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition.
No sample metadata fields
View SamplesResponse of JHCO9 and JHOC5 cells to infection with NT (control) lentivirus or one of two knockdown lentiviruses, SPINK1 KD or IL-6 KD.
Targeting an autocrine IL-6-SPINK1 signaling axis to suppress metastatic spread in ovarian clear cell carcinoma.
Specimen part, Cell line
View SamplesUterine receptivity implies a dialogue between the hormonally primed maternal endometrium and the free-floating blastocyst. Endometrial stromal cells proliferate, avert apoptosis, and undergo decidualization in preparation for implantation; however, the molecular mechanisms that underlie differentiation into the decidual phenotype remain largely undefined. The Notch family of transmembrane receptors transduce extracellular signals responsible for cell survival, cell-to-cell communication, and trans-differentiation, all fundamental processes for decidualization and pregnancy. Using a murine artificial decidualization model, pharmacological inhibition of Notch signaling by gamma-secretase inhibition resulted in significantly decreased deciduoma. Furthermore, a progesterone receptor (PR)-Cre Notch1 bigenic (Notch1d/d) confirmed a Notch1-dependant hypomorphic decidual phenotype.
Notch1 mediates uterine stromal differentiation and is critical for complete decidualization in the mouse.
Sex, Age, Specimen part
View SamplesResponse of pancreas cancer cells to treatment with recombinant MMP3
Tumor cell-derived MMP3 orchestrates Rac1b and tissue alterations that promote pancreatic adenocarcinoma.
Specimen part, Cell line, Treatment
View SamplesExpression profiles of anti-TNF responders were compared to profiles of anti-TNF non-responders in order to identify an expression signature for anti-TNF response
Validation study of existing gene expression signatures for anti-TNF treatment in patients with rheumatoid arthritis.
Specimen part, Disease, Disease stage, Treatment
View Samples