This SuperSeries is composed of the SubSeries listed below.
H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.
Cell line, Treatment
View SamplesKnockdown of H19 leads to cell cycle arrest, reduced cell proliferation, and reduced cell migration in HCT116 cells.
H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.
Cell line, Treatment
View SamplesWe used microarrays to detail the global programme of gene expression following CTNNB1 knockdown in HCT116 cells
H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.
Cell line, Treatment
View SamplesWe used microarrays to detail the global programme of gene expression following CDK8 knockdown in HCT116 cells
H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.
Cell line, Treatment
View SamplesKnockdown of H19 leads to cell cycle arrest, reduced cell proliferation, and reduced cell migration in DLD1 cells.
H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.
Cell line, Treatment
View SamplesTargeting the Mdm2 oncoprotein by drugs has the potential of re-establishing p53 function and tumor suppression. However, Mdm2-antagonizing drug candidates, e. g. Nutlin-3a, often fail to abolish cancer cell growth sustainably. To overcome these limitations, we inhibited Mdm2 and simultaneously a second negative regulator of p53, the phosphatase Wip1/PPM1D. When combining Nutlin-3a with the Wip1 inhibitor GSK2830371 in the treatment of p53-proficient but not p53-deficient cells, we observed enhanced phosphorylation (Ser 15) and acetylation (Lys 382) of p53, increased expression of p53 target gene products, and synergistic inhibition of cell proliferation. Surprisingly, when testing the two compounds individually, largely distinct sets of genes were induced, as revealed by deep sequencing analysis of RNA. In contrast, the combination of both drugs led to an expression signature that largely comprised that of Nutlin-3a alone. Moreover, the combination of drugs, or the combination of Nutlin-3a with Wip1-depletion by siRNA, activated p53-responsive genes to a greater extent than either of the compounds alone. Simultaneous inhibition of Mdm2 and Wip1 enhanced cell senescence and G2/M accumulation. Taken together, the inhibition of Wip1 might fortify p53-mediated tumor suppression by Mdm2 antagonists. Overall design: Expression profiling by high throughput sequencing
Cooperation of Nutlin-3a and a Wip1 inhibitor to induce p53 activity.
Specimen part, Treatment, Subject
View SamplesOverexpression of the Polycomb group protein Enhancer of Zeste Homolog 2 (EZH2) occurs in diverse malignancies, including prostate cancer, breast cancer, and glioblastoma multiforme (GBM) (1). Based on its ability to modulate transcription of key genes implicated in cell cycle control, DNA repair and cell differentiation, EZH2 is believed to play a crucial role in tissue-specific stem cell maintenance and tumor development. Here we show that targeted pharmacologic disruption of EZH2 by the S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin A (DZNep), or its specific down-regulation by shRNA, strongly impairs GBM cancer stem cell self-renewal in vitro and tumor-initiating capacity in vivo. Using genome-wide expression analysis of DZNep-treated GBM cancer stem cells, we found the expression of c-myc, recently reported to be essential for GBM cancer stem cells, to be strongly repressed upon EZH2 depletion. Specific shRNA-mediated down-regulation of EZH2 in combination with chromatin immunoprecipitation (ChIP) experiments revealed that c-myc is a direct target of EZH2 in GBM cancer stem cells. Taken together, our observations provide evidence that direct transcriptional regulation of c-myc by EZH2 may constitute a novel mechanism underlying GBM cancer stem cell maintenance and suggest that EZH2 may be a valuable new therapeutic target for GBM management.
EZH2 is essential for glioblastoma cancer stem cell maintenance.
Specimen part, Treatment
View SamplesThe cancer-risk associated rs6983267 single nucleotide polymorphism (SNP) and the accompanying long non-coding RNA CCAT2 in the highly amplified 8q24.21 region has been implicated in cancer predisposition, though causality has not been established. Here, using allele-specific CCAT2 transgenic mice, we demonstrate that CCAT2 overexpression leads to spontaneous myeloid malignancies. CCAT2 is overexpressed in bone marrow and peripheral blood of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) patients. CCAT2 induces global deregulation of gene expression by downregulating EZH2 in vitro and in vivo in an allele-specific manner. We also identified a novel disease-specific RNA mutation (named DNA-to-RNA allelic imbalance, DRAI) at the SNP locus in MDS/MPN patients and CCAT2-transgenic mice. The RNA transcribed from the SNP locus in malignant hematopoietic cells have different allelic composition from the corresponding genomic DNA, a phenomenon rarely observed in normal cells. Our findings provide fundamental insights into the functional role of rs6983267 SNP and CCAT2 in myeloid malignancies.
Cancer-associated rs6983267 SNP and its accompanying long noncoding RNA <i>CCAT2</i> induce myeloid malignancies via unique SNP-specific RNA mutations.
Specimen part
View SamplesC2H2 zinc finger proteins represent the largest and most enigmatic class of human transcription factors. Their C2H2 arrays are highly variable, indicating that most will have unique DNA binding motifs. However, most of the binding motifs have not been directly determined. We have determined the binding sites and motifs of 119 C2H2 zinc finger proteins and the expression pattern of 80 cell lines overexpressing C2H2 zinc finger proteins in order to study the role of C2H2 zinc finger proteins in gene regulation. Overall design: We expressed GFP-tagged C2H2-ZF proteins in stable transgenic HEK293 cells. Total RNA was isolated using Trizol and sequencing libraries were constructed using TruSeq Stranded Total RNA Library Prep Kit with Ribo-Zero Gold or TruSeq RNA Library Preparation Kit v2.
Multiparameter functional diversity of human C2H2 zinc finger proteins.
No sample metadata fields
View SamplesLand plants can reproduce sexually by developing an embryo from a fertilized egg cell. However, embryos can also be formed from other cell types in many plant species. A key question is thus how embryo identity in plants is controlled, and how this process is modified during non-zygotic embryogenesis. The Arabidopsis zygote divides to produce an embryonic lineage and an extra-embryonic suspensor. Yet, normally quiescent suspensor cells can develop a second embryo when the initial embryo is damaged, or when response to the signaling molecule auxin is locally blocked. Here we have used auxin-dependent suspensor embryogenesis as a model to determine transcriptome changes during embryonic reprogramming. We find that reprogramming is complex and accompanied by large transcriptomic changes prior to anatomic changes. This analysis revealed a strong enrichment for genes encoding components of auxin homeostasis and response among misregulated genes. Strikingly, deregulation among multiple auxin-related gene families converged upon re-establishment of cellular auxin levels or response. This suggests a remarkable degree of feedback regulation to create resilience in auxin response during embryo development. Starting from the transcriptome of auxin-deregulated embryos, we identify an auxin-dependent bHLH transcription factor network that mediates the activity of this hormone in suppressing embryo development from the suspensor.
A Robust Auxin Response Network Controls Embryo and Suspensor Development through a Basic Helix Loop Helix Transcriptional Module.
Specimen part
View Samples