In this study we analyzed the behavior of bone marrow MSC (BM-MSC) from MPN patients with the mutation in JAK2V617F. We initially characterized the biological function and gene expression profile changes in BM-MSC from MPN patients when compared to BM-MSC of healthy donors (HD). Then, we established co-cultures between MSC cell lines (HTERT and HS5) and the UKE-1 MPN cell line, and performed RT-PCR to study if the leukemic cells were able to modify the genes related to hematopoietic support.
Mesenchymal stromal cells (MSC) from JAK2+ myeloproliferative neoplasms differ from normal MSC and contribute to the maintenance of neoplastic hematopoiesis.
Specimen part, Disease stage, Subject
View SamplesAllergic diseases correspond to a broad range of hypersensitivity reactions, often occurring as co-morbidities. Investigation of the molecular basis of allergy is a challenge because of its highly heterogeneous nature. We combined large-scale and high-throughput gene expression technology and systems biology approaches to retrieve relevant biomarkers and signalling pathways.
A novel whole blood gene expression signature for asthma, dermatitis, and rhinitis multimorbidity in children and adolescents.
Sex, Age, Specimen part
View SamplesAllergic diseases correspond to a broad range of hypersensitivity reactions, often occurring as co-morbidities. Investigation of the molecular basis of allergy is a challenge because of its highly heterogeneous nature. We combined large-scale and high-throughput gene expression technology and systems biology approaches to retrieve relevant biomarkers and signalling pathways.
A novel whole blood gene expression signature for asthma, dermatitis, and rhinitis multimorbidity in children and adolescents.
Sex, Age, Specimen part
View SamplesERAS (Embryonic stem (ES) cell-expressed Ras) is a constitutively active member of the Ras family that is not expressed in adult tissues, and has been involved in breast cancer.
The Ras-related gene ERAS is involved in human and murine breast cancer.
Cell line
View SamplesNumerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB) administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total) and nematode viability was assessed after oxidative stress (3mM and 5mM H2O2). One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. We performed a transcriptomic analysis of C. elegans fed with this strain and showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans.
Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans.
Time
View SamplesLactoferrin is a highly multifunctional protein. Indeed, it is involved in many physiological functions, including regulation of iron absorption and immune responses.
A nutritional supplement containing lactoferrin stimulates the immune system, extends lifespan, and reduces amyloid <i>β</i> peptide toxicity in <i>Caenorhabditis elegans</i>.
No sample metadata fields
View SamplesCocoa protein content is a very interesting source for isolation of antioxidant bio-peptides, which can be used for the prevention of age-related diseases. We use microarrays to study the global genome expression of C. elegans fed with a peptide (13L) isolated from cocoa.
A cocoa peptide protects Caenorhabditis elegans from oxidative stress and β-amyloid peptide toxicity.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.
Specimen part, Disease, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.
Specimen part
View SamplesNephritis (LN) is a serious manifestation of SLE. Therapeutic studies in mouse LN models do not always predict outcomes of human therapeutic trials, raising concerns about the human relevance of these models. In this study we used an unbiased transcriptional network approach to define similarities and differences between three lupus models and human LN. Affymetrix-based expression profiles were analyzed using Genomatix Bibliosphere software and transcriptional networks were compared using the Tool for Approximate LargE graph matching (TALE). The 20 network hubs (nodes) shared between all three models and human LN reflect key pathologic processes, namely immune cell infiltration/activation, macrophage/dendritic cell activation, endothelial cell activation/injury and tissue remodeling/fibrosis. Each model also shares unique features with human LN. Pathway analysis of the TALE nodes highlighted macrophage/DC activation as a cross-species shared feature. To distinguish which genes and activation pathways might derive from mononuclear phagocytes in the human kidneys the gene expression profile of isolated NZB/W renal mononuclear cells was compared with human LN kidney profiles. Network analysis of the shared signature highlighted NFkappaB1 and PPARgamma as major hubs in the tubulointerstitial and glomerular networks respectively. Key nodes in the renal macrophage inflammatory response form the basis for further mechanistic and therapeutic studies.
Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.
Specimen part, Disease, Subject
View Samples