In this experiment, we sought to analyze how the transcriptome of WT, ?5|6, and ?5|6:7|9 cells vary during differentiation of ESCs into cervical motor neurons Overall design: 3 lines (WT, ?5|6, ?5|6:7|9)
CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation.
No sample metadata fields
View SamplesAlthough smoking-induced lung disease tends to be more common in the upper lobe, it is not known if this results from the skewed distribution of inhaled cigarette smoke or increased susceptibility of the upper lobes to these disorders. The distribution of inhaled cigarette smoke within the lung is complex, depending on lung pressure-volume relationships, gravity, individual smoking habits and the properties of the individual components of cigarette smoke. With the knowledge that the small airway epithelium is the earliest site of smoking-induced lung disease, and that the small airway epithelium is acutely sensitive to inhaled cigarette smoke with significant changes in the up- and down-regulation of hundreds of genes, we compared upper vs lower lobe gene expression in the small airway epithelium of the same cigarette smokers to determine if the gene expression patterns were similar or different. Active smokers (n=11) with early evidence of smoking-induced lung disease (normal spirometry but low diffusing capacity) underwent bronchoscopy and brushing of the small airway epithelium to compare upper vs lower lobe genome-wide gene expression assessed by microarray. Interestingly, cluster and principal component analysis demonstrated that, for each individual, the expression of the known small airway epithelium smoking-responsive genes were remarkably similar as upper vs lower lobe pairs, although, as expected, there were differences in the smoking-induced changes in gene expression from individual to individual. Thus, while there may be topographic differences in the distribution of cigarette smoke, sufficient smoke reaches the upper vs lower lobe small airway epithelium so that, within each smoker, the upper vs lower lobe gene expression are similar. These observations support the concept that the topographic differences in the occurrence of the smoking-induced lung diseases are likely secondary to topographic differences in the susceptibility of the upper vs lower lobes to cigarette smoke, not the topographic differences in distribution of inhaled cigarette smoke.
High correlation of the response of upper and lower lobe small airway epithelium to smoking.
Specimen part
View SamplesWe report that in developing B cells individual enhancers of Igk make up super-enhancer cluster where contacts between its components rely on all constituents. Reduction of interaction frequency in enhancer knock-out cells is associated with deminished transcriptional output of enhancers and Igk locus. Moreover, we find that Igk enhancer MiEk has an effect on levels of CBFb enrichment on Tcrb enhancer, Eb afffecting Tcrb recombination and T cell development. Overall design: Examination of expression, chromatin accessibility, histone modifications and nuclear organization in developing wild-type and Igk and Tcrb enhancer deficient B and T lymphocytes.
Active and Inactive Enhancers Cooperate to Exert Localized and Long-Range Control of Gene Regulation.
Specimen part, Cell line, Subject
View SamplesWe performed RNA-sequencing in c-Kit+ cells that were infected with retroviruses expressing shRNAs for Renilla, Rad21, Smc1a, Smc3 or Stag2. These cells were grown in methylcellulose (M3434) for either one passage (P1) or replated for five passages (P5). Overall design: RNA-sequencing control (Ren) and cohesin (Rad21, Smc1a, Smc3 and Stag2) knockdown cells.
Cohesin loss alters adult hematopoietic stem cell homeostasis, leading to myeloproliferative neoplasms.
Specimen part, Subject
View SamplesWe performed RNA-sequencing in LSK cells (Lin(neg)/c-Kit(+)/Sca-1(+)) from shRNA mice carrying an shRNA for Renilla, Smc1a or Stag2. Overall design: RNA-sequencing control (Renilla) and cohesin (Smc1a and Stag2) knockdown cells.
Cohesin loss alters adult hematopoietic stem cell homeostasis, leading to myeloproliferative neoplasms.
Specimen part, Subject
View SamplesThe innate immune system is vital to rapidly responding to pathogens and Toll-like receptors (TLRs) are a critical component of this response. Nanovesicular exosomes play a role in immunity, but to date their exact contribution to the dissemination of the TLR response is unknown. To understand the effect of exosomal cargo released from locally stimulated cells on distal cell expression, we collected exosomes from local ovarian adenocarcinoma (HEY) cells that were either unstimulated (control-exosomes), stimulated with pIC (pIC-exosomes), or lipopolysaccharide (LPS-exosomes) for 48 hours. The three groups of exosomes were added to nave (distal) cells and the gene expression profiles were compared between local TLR stimulation (for 6 hours) and distal stimulation mediated by exosomes at the 48-hour time point
TLR-exosomes exhibit distinct kinetics and effector function.
Specimen part, Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MED12 Regulates HSC-Specific Enhancers Independently of Mediator Kinase Activity to Control Hematopoiesis.
Specimen part, Cell line
View SamplesHematopoietic stem cells and progenitors from controls and Med12Flox; mxCre mice treated with pI:pC 4 days afters injection were sorted and Micrroarray Affymetrix mouse 430.2 platform.
MED12 Regulates HSC-Specific Enhancers Independently of Mediator Kinase Activity to Control Hematopoiesis.
No sample metadata fields
View SamplesRNA-seq was performed to assess gene expression alterations by the addition of serial oncogenic hits (mutant-IDH1, P53 knockdown and ATRX knockdown) in human neural stem cells. Overall design: All RNA-seq was performed in duplicates, there are four conditions total. Vector NSCs are the control line and have an empty mCherry vector and a scramble shRNA vector. One hit NSCs express mutant-IDH1 and have a scamble shRNA vector. Two-hit NSCs express mutant IDH1 and have p53 knockdown. Three-hit NSCs express mutant-IDH1, P53 knockdown and ATRX knockdown.
Low-Grade Astrocytoma Mutations in IDH1, P53, and ATRX Cooperate to Block Differentiation of Human Neural Stem Cells via Repression of SOX2.
Subject
View SamplesIn prior work we developed an optogenetic system for delivering highly precise, time-varying inputs to Ras, termed OptoSOS (Toettcher et al., 2013). This system relies on a membrane-targeted photoswitchable protein (Phy-CAAX) and a cytoplasmic Ras activator (PIF-SOScat) whose localization to the membrane can be controlled with light. In this system, Phy/PIF heterodimerization can be triggered on and off by exposure to 650 and 750 nm light, respectively. We found that this system could be used to deliver highly precise levels and dynamics of Ras/Erk signaling both in vitro and in vivo. Here, we aimed to globally assess the transcriptional response to light-activated Ras and compare it to that induced by growth factor stimulation. We stimulated NIH3T3 OptoSOS cells with either constant activating red light or PDGF and measured transcriptional responses by RNAseq. Total mRNA was collected after 0, 30, 60 and 120 minutes and used to track the dynamics of transcript abundance in both conditions. Genes were defined as upregulated if they satisfied two criteria: (i) induced at least three-fold over unstimulated cells, and (ii) induced at least two consecutive timepoints. By these criteria we detected 118 genes that were upregulated within 2 h by either PDGF or light stimulation, a comparable number of Ras-responsive genes to that found in previous studies. We found that both PDGF and light induced nearly identical profiles of gene expression, with 100/118 genes induced by PDGF and 110/118 induced by light. At each time point we found excellent agreement between the levels of gene induction in response to both stimuli. This agreement also extended to response dynamics. where hierarchical clustering revealed three classes of dynamic response: an early response peaking within 30 min, an intermediate response peaking at ~1 h, and a late response where gene expression gradually increased over the full 2 h timecourse. In all three classes, we found that light and PDGF led to highly similar expression changes over time. We thus concluded that sole stimulation of the Ras/Erk pathway by light was sufficient to recapitulate at least the first two hours of the PDGF-induced transcriptional response. Overall design: RNA-seq to measure global transcript abundance at various timepoints after PDGF stimulation or direct optogenetic activation of Ras using the OptoSOS system in NIH3T3 cells (Toettcher et al, Cell 2013). 9 samples were collected using the TruSeq library preparation kit (Illumina), multiplexed, pooled and measured in 3 lanes of an Illumina Hi-Seq 2000. Library quality was assessed by Agilent Bioanalyzer. Roughly 30-50 million reads were measured per sample across all 3 lanes. Baseline transcript abundance was measured in triplicate (0 min controls) and each successive timepoint was measured in a single collection. Genes were considered upregulated if they were induced at least 5-fold in at least two consecutive timepoints relative to their baseline abundance.
Tracing Information Flow from Erk to Target Gene Induction Reveals Mechanisms of Dynamic and Combinatorial Control.
Specimen part, Subject
View Samples