Comparative genomic analysis of nutrient response to NO3-, NH4+ or NH4+: NO3- in barley
Global transcriptional and physiological responses of Saccharomyces cerevisiae to ammonium, L-alanine, or L-glutamine limitation.
Age, Specimen part, Subject, Compound
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors.
Sex, Age, Specimen part, Disease
View SamplesIn the present study we analyzed the effect of primary osteoporosis and advanced donor age on the transcriptome of human mesenchymal stem cells (hMSC; alternatively named mesenchymal stromal cells) from bone marrow. Human MSC of elderly patients suffering from osteoporosis were isolated from femoral heads after low-energy fracture of the femoral neck. Control cells were obtained from bone marrow of femoral heads of middle-aged, non-osteoporotic donors after total hip arthroplasty.
The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors.
Sex, Age, Specimen part, Disease
View SamplesIn the present study we analyzed the effect of cellular senescence on the transcriptome of human mesenchymal stem cells (hMSC; alternatively named mesenchymal stromal cells) from bone marrow. Human MSC were isolated from femoral heads of non-osteoporotic donors after total hip arthroplasty.
The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors.
Sex, Age, Specimen part
View SamplesIn the present study we analyzed the effect of primary osteoporosis on the transcriptome of human mesenchymal stem cells (hMSC; alternatively named mesenchymal stromal cells) from human bone marrow. Human MSC of elderly patients suffering from osteoporosis were isolated from femoral heads after low-energy fracture of the femoral neck. Bone marrow of age-matched, non-osteoporotic donors was obtained of femoral heads after total hip arthroplasty.
The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors.
Sex, Age, Specimen part, Disease
View SamplesIn the present study we analyzed the effect of advanced donor age on the transcriptome of human mesenchymal stem cells (hMSC; alternatively named mesenchymal stromal cells) from bone marrow. Human MSC of elderly and middle-aged patients without symptoms of osteoporosis were isolated from femoral heads after total hip arthroplasty.
The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors.
Sex, Age, Specimen part
View SamplesWe applied ribosome profiling and RNA sequencing to examine gene expression regulation during oncogenic cell transformation. One model involves normal mammary epithelial cells (MCF10A) containing ER-Src. Treatment of such cells with tamoxifen rapidly induces Src, thereby making it possible to kinetically follow the transition between normal and transformed cells. The other model consists of three isogenic cell lines derived from primary fibroblasts in a serial manner (Hahn et al., 1999). EH cell is immortalized by overexpression of telomerase (hTERT), and exhibits normal fibroblast morphology. EL cell expresses hTERT along with both large and small T antigens of Simian virus 40, and it displays an altered morphology but is not transformed. ELR cell expresses hTERT, T antigens, and an oncogenic derivative of Ras (H-RasV12). Overall design: Ribosome profiling and RNA sequencing in two cancer cell models
Many lncRNAs, 5'UTRs, and pseudogenes are translated and some are likely to express functional proteins.
No sample metadata fields
View SamplesThe identification of cell types and marker genes is critical for dissecting neural development and function, but the size and complexity of the brain has hindered the comprehensive discovery of cell types. We combined single-cell RNA-seq with anatomical brain registration to create a comprehensive map of the zebrafish habenula, a conserved forebrain hub involved in pain processing and learning. Single-cell transcriptomes of ~13000 habenular cells (>4x coverage) identified 18 neuronal types and dozens of marker genes. Registration of marker genes onto a common reference atlas created a rich resource for anatomical and functional studies and enabled the mapping of active neurons onto neuronal types following aversive stimuli. Strikingly, despite brain growth and functional maturation, cell types were retained between the larval and adult habenula. This study provides a gene expression atlas to dissect habenular development and function and offers a general framework for the comprehensive characterization of other brain regions. Overall design: gng8-GFP zebrafish heads were dissected, dissociated and FAC sorted into 96 well plates. Single cell libraries were generated in batches of 384 cells using Smart-seq2. A total of 22 gng8-GFP fish were dissected in 3 batches and 384 cells were processed from each using Smart-seq2.
Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq.
Specimen part, Subject
View SamplesAging is accompanied by physiological impairments, which, in insulin-responsive tissues, including the liver, predispose individuals to metabolic disease. However, the molecular mechanisms underlying these changes remain largely unknown. Here, we analyze genome-wide profiles of RNA and chromatin organization in the liver of young (3 months) and old (21 months) mice. Transcriptional changes suggest that de-repression of the nuclear receptors PPARa, PPAR?, and LXRa in aged mouse liver leads to activation of targets regulating lipid synthesis and storage, whereas age-dependent changes in nucleosome occupancy are associated with binding sites for both known regulators (forkhead factors and nuclear receptors) and for novel candidates associated with nuclear lamina (Hdac3 and Srf) implicated to govern metabolic function of aging liver. Winged-helix factor Foxa2 and nuclear receptor co-repressor Hdac3 exhibit reciprocal binding pattern at PPARa targets contributing to gene expression changes that lead to steatosis in aged liver. Overall design: Genome-wide expression profiles (RNA-Seq) from young (3 months) and old (21 months) mouse livers
Changes in nucleosome occupancy associated with metabolic alterations in aged mammalian liver.
No sample metadata fields
View SamplesSpatial localization is a key determinant of cellular fate and behavior, but spatial RNA assays traditionally rely on staining for a limited number of RNA species. In contrast, single-cell RNA-seq allows for deep profiling of cellular gene expression, but established methods separate cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos, inferring a transcriptome-wide map of spatial patterning. We confirmed Seurat’s accuracy using several experimental approaches, and used it to identify a set of archetypal expression patterns and spatial markers. Additionally, Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems. Overall design: We generated single-cell RNA-seq profiles from dissociated cells from developing zebrafish embryos (late blastula stage - 50% epiboly)
Spatial reconstruction of single-cell gene expression data.
Subject
View Samples