Cancer-related fatigue is one of the most frequent complaints among breast cancer survivors, with a major negative impact on general life. However, the etiology behind this syndrome is still unraveled. Gene expression analysis was performed on whole blood samples from breast cancer survivors classified as either fatigued or non-fatigued at two consecutive time points. The analysis identified several gene sets concerning plasma and B cell pathways as different between the fatigue and non-fatigue groups, suggesting that a deregulation in these pathways might underlie the fatigue syndrome. The fatigue group also showed a higher mean level of leucocytes, lymphocytes and neutrophiles compared with the non-fatigue group, thus further implicating the immune system in the biology behind the fatigue syndrome.
Alterations of gene expression in blood cells associated with chronic fatigue in breast cancer survivors.
Specimen part, Subject
View SamplesOne of the most common genetic alterations in acute myeloid leukemia is the internal tandem duplication (ITD) in the FLT3 receptor for cytokine FLT3 ligand (FLT3L). The constitutively active FLT3-ITD promotes the expansion of transformed progenitors, but also has pleiotropic effects on normal hematopoiesis. We analyzed the effect of FLT3-ITD on dendritic cells (DCs), which express FLT3 and can be expanded by FLT3L administration. We report that young pre-leukemic mice with the Flt3ITD knock-in allele manifest an expansion of all DCs including classical (cDCs) and plasmacytoid (pDCs). The expansion originated in DC progenitors, occurred in a cell-intrinsic manner and was further enhanced in Flt3ITD/ITD mice. The mutation caused the downregulation of Flt3 on the surface of DCs and reduced their responsiveness to Flt3L. Flt3ITD mice showed enhanced capacity to support T cell proliferation, including a cell-extrinsic expansion of regulatory T cells (Tregs). Accordingly, these mice restricted alloreactive T cell responses during graft-versus-host reaction, but failed to control autoimmunity in the absence of Tregs. Thus, the FLT3-ITD mutation directly affects DC development, thereby indirectly modulating T cell homeostasis and supporting Treg expansion. This effect of FLT3-ITD may subvert immunosurveillance and promote leukemogenesis in a cell-extrinsic manner. Overall design: Sorted splenic dendritic cell subsets from either Flt3+/+ or Flt3ITD/+ mice were sequenced for mRNA profiling. For each subset per genotype contains 2-3 replicates, all from independent experiments.
Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Promoter DNA methylation patterns of differentiated cells are largely programmed at the progenitor stage.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Epigenetic priming of inflammatory response genes by high glucose in adipose progenitor cells.
Specimen part
View SamplesWe surveyed DNA methylation profiles of all human RefSeq promoters in relation to gene expression and differentiation in adipose tissue, bone marrow and muscle mesenchymal progenitors, as well as in bone marrow-derived hematopoietic progenitors. We unravel strongly overlapping DNA methylation profiles between adipose stem cells (ASCs), bone marrow mesenchymal stem cells (BMMSCs) and muscle progenitor cells (MPCs), while hematopoietic progenitor cells (HPCs) are more epigenetically distant from MSCs seen as a whole. Differentiation resolves a fraction of methylation patterns common to MSCs, generating epigenetic divergence.
Promoter DNA methylation patterns of differentiated cells are largely programmed at the progenitor stage.
Specimen part
View SamplesThe object of this study was to investigate the effect of elevated glucose concentrations (15 and 25 mM glucose) on gene expression in undifferentiated and adipogenic differentiated ASCs.
Epigenetic priming of inflammatory response genes by high glucose in adipose progenitor cells.
Specimen part
View SamplesThe aim of this study was to characterize basal gene expression for proliferating adipose tissue MSCs, cultured at normal cell culture conditions.
Epigenetic priming of inflammatory response genes by high glucose in adipose progenitor cells.
Specimen part
View Samplesβ cell apoptosis and dedifferentiation are two hotly-debated mechanisms underlying β cell loss in type 2 diabetes (T2D); however, the molecular drivers underlying such events remain largely unclear. Here, by performing a side-by-side comparison of mice carrying β cell-specific deletion of endoplasmic reticulum (ER)-associated degradation (ERAD) and autophagy, we report that while autophagy appears necessary for β cell survival, the highly conserved Sel1L-Hrd1 ERAD protein complex is required for the maintenance of β cell maturation and identity. Notably, SEL1L expression is significantly reduced in human T2D islets compared to healthy human islets. At the single cell level, we demonstrate that Sel1L deficiency is not associated with β cell loss, but rather loss of β cell identity. Mechanistically, we find that Sel1L-Hrd1 ERAD controls β cell identity via TGFβ signaling, in part by mediating the degradation of TGF-β receptor 1 (TGFβRI). Inhibition of TGFβ signaling in Sel1L-deficient β cells augments the expression of β cell maturation markers and increases the total insulin content. Our data reveal profound but distinct pathogenic effects of two major proteolytic pathways in β cells, providing a new framework for therapies targeting distinct mechanisms of protein quality control.
Sel1L-Hrd1 ER-associated degradation maintains β cell identity via TGF-β signaling.
Sex, Specimen part
View SamplesEpigenetic environment of histone H3.3 on promoters revealed by integration of imaging and genome-scale chromatin and methyl-DNA immunoprecipitation information.
Chromatin environment of histone variant H3.3 revealed by quantitative imaging and genome-scale chromatin and DNA immunoprecipitation.
Specimen part
View SamplesPancreatic islet endocrine cell and endothelial cell (EC) interactions mediated by vascular endothelial growth factor-A (VEGF-A) signaling are important for islet endocrine cell differentiation and the formation of highly vascularized islets. To dissect how VEGF-A signaling modulates intra-islet vasculature and innervation, islet microenvironment, and ß cell mass, we transiently increased VEGF-A production by ß cells. VEGF-A induction dramatically increased the number of intra-islet ECs but led to ß cell loss. After withdrawal of the VEGF-A stimulus, ß cell mass, function, and islet structure normalized as a result of a robust, but transient, burst in proliferation of pre-existing ß cells. Bone marrow-derived macrophages (MFs) recruited to the site of ß cell injury were crucial for the ß cell proliferation, which was independent of pancreatic location and circulating factors such as glucose. Identification of the signals responsible for the proliferation of adult, terminally differentiated ß cells will improve strategies aimed at ß cell regeneration and expansion. Overall design: Examination of RNA profiles from isolated whole islets from RIP-rtTA; TetO-VEGF-A mice with no doxycycline (Dox) treatment (3 samples) and after 1 week of Dox (3 sample); and islet-derived macrophages (3 samples) and endothelial cells (3 samples) isolated from dispersed purified islets from RIP-rtTA; TetO-VEGF-A mice after 1 week Dox treatment by fluorescence-activated cell sorting using antibodies against CD11b and CD31, respectively.
Vascular endothelial growth factor coordinates islet innervation via vascular scaffolding.
Specimen part, Cell line, Treatment, Subject
View Samples