Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation. DNA methylation provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1) maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintenance, a clear role for DNMT1 in maintaining the progenitor state in constantly replenished somatic tissues, such as mammalian epidermis, is uncharacterized. Here we show that DNMT1 is essential for supporting epidermal progenitor cell function. DNMT1 protein was found enriched in undifferentiated cells, where it was required to retain proliferative stamina and suppress differentiation. In tissue, DNMT1 depletion led to exit from the progenitor cell compartment, premature differentiation and eventual tissue loss. These effects correlated with DNA methylation as genome-wide analysis revealed that a significant portion of epidermal differentiation gene promoters were methylated in self-renewing conditions but were subsequently demethylated during differentiation.
DNMT1 maintains progenitor function in self-renewing somatic tissue.
Sex, Specimen part
View SamplesIn order to understand differentially regulated gene expression after the different treatments, 4 size matched tumors of each group were analyzed by microarrays.
Regulation of myeloid cells by activated T cells determines the efficacy of PD-1 blockade.
Specimen part
View SamplesThe identification of genes that contribute to the biological basis for clinical heterogeneity and progression of prostate cancer is critical to accurate classification and appropriate therapy. We performed a comprehensive gene expression analysis of prostate cancer using oligonucleotide arrays with 63,175 probe sets to identify genes and expressed sequences with strong and uniform differential expression between nonrecurrent primary prostate cancers and metastatic prostate cancers. The mean expression value for >3,000 tumor-intrinsic genes differed by at least 3-fold between the two groups. This includes many novel ESTs not previously implicated in prostate cancer progression. Many differentially expressed genes participate in biological processes that may contribute to the clinical phenotype. One example was a strong correlation between high proliferation rates in metastatic cancers and overexpression of genes that participate in cell cycle regulation, DNA replication, and DNA repair. Other functional categories of differentially expressed genes included transcriptional regulation, signaling, signal transduction, cell structure, and motility. These differentially expressed genes reflect critical cellular activities that contribute to clinical heterogeneity and provide diagnostic and therapeutic targets.
Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesMolecular profiling of 159 lung cancers of different histological subtypes. A primary objective is to identify gene expression differences between histological subtypes. Sample overlap exist with GSE60644
Gene Expression Profiling of Large Cell Lung Cancer Links Transcriptional Phenotypes to the New Histological WHO 2015 Classification.
Sex, Age
View SamplesExpression profiling of a panel of 101 adult male germ cell tumors and 5 normal testis specimens was performed on Affymetrix U133A and U133B microarrays. This data has been used to:
Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors.
No sample metadata fields
View SamplesThis series represents expression profiles of 34 non-seminoma germ cell tumors (NSGCTs) from patients who received cisplatin based chemotherarpy for treatment of their disease for whom full clinical follow-up information was available. These specimens were used as a validation set to test outcome prediction models using a subset of previously profiled GCT specimens (see GEO accession #GSE3218).
Identification and validation of a gene expression signature that predicts outcome in adult men with germ cell tumors.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genomic deregulation during metastasis of renal cell carcinoma implements a myofibroblast-like program of gene expression.
Specimen part, Disease, Disease stage, Cell line
View SamplesThis study investigates the molecular signatures that drive Renal Cell Carcinoma (RCC) metastatic conversion using the 16 paired Human tumor samples.
Genomic deregulation during metastasis of renal cell carcinoma implements a myofibroblast-like program of gene expression.
Specimen part, Disease
View SamplesTo elucidate mechanisms of cancer progression, we generated inducible human neoplasia in 3-dimensionally intact epithelial tissue. Gene expression profiling of both epithelia and stroma at specific time points during tumor progression revealed sequential enrichment of genes mediating discrete biologic functions in each tissue compartment. A core cancer progression signature was distilled using the increased signaling specificity of downstream oncogene effectors and subjected to network modeling. Network topology predicted that tumor development depends upon specific ECM-interacting network hubs. Blockade of one such hub, the b1 integrin subunit, disrupted network gene expression and attenuated tumorigenesis in vivo. Thus, integrating network modeling and temporal gene expression analysis of inducible human neoplasia provides an approach to prioritize and characterize genes functioning in cancer progression.
Modeling inducible human tissue neoplasia identifies an extracellular matrix interaction network involved in cancer progression.
Specimen part
View SamplesHere we show that MIWI is a small RNA-guided ribonuclease (Slicer) that requires extensive complementarity for target cleavage in vitro. Disruption of its catalytic activity in mice by a single point mutation results in male infertility and displays increased accumulation of LINE1 transposon transcripts. Overall design: MIWI-associated piRNAs from different genotypes were sequenced. Total RNA from purified round spermatids were subjected to Ribozero purification and strand-specific RNAseq lib prepared. Global 5'' RACE library was prepare from indicated genotypes.
Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing.
Specimen part, Cell line, Subject
View Samples