Excessive reactive oxygen species (ROS) underlie the pathogenesis of multiple disorders. Nevertheless, physiological levels of ROS are required for intracellular signalling and maintenance of metabolic homeostasis. DJ-1, a Parkinsons disease-associated protein, is involved in the regulation of oxidative stress. Our aim in this study was to determine the effect of DJ-1 disruption on gene expression in muscle cells. To this end, we transfected a murine myoblast cell line, C2C12 cells with siRNA targeting DJ-1.
DJ-1 links muscle ROS production with metabolic reprogramming and systemic energy homeostasis in mice.
Specimen part
View SamplesAtaxin 1 (Atxn1) is a protein of unknown function associated with cerebellar neurodegeneration in spinocerebellar ataxia type 1 (SCA1). SCA1 is caused by an expanded polyglutamine within Atxn1 by gain-of-function mechanisms. Lack of Atxn1 in mice triggers motor deficits in the absence of neurodegeneration or apparent neuropathological abnormalities.We extracted RNA from cerebellum of 5 Atxn1-null mice and 5 WT. Cerebellar gene expression profiles at 15 weeks of age were generated usSCA1 ing Affymetrix MOE430A arrays. Identifying the molecular pathways regulated by Atxn1 can provide insights into the early molecular mechanisms underlying neuronal dysfunction.
Down-regulation of the dopamine receptor D2 in mice lacking ataxin 1.
Age, Specimen part
View SamplesWe show that resident macrophages accumulate in cilia mutant mice prior to cyst formation and that inhibition of resident macrophage accumulation reduces cystic kidney disease. Overall design: We analyzed gene expression of R2a (CD11c+) and R2b (CD11c-) resident macrophages isolated from adult, wild type mice. In these experiments, we isolated RNA from 6-8 mice and pooled the RNA together prior to sequencing.
Tissue-Resident Macrophages Promote Renal Cystic Disease.
Age, Specimen part, Cell line, Subject
View SamplesStem and progenitor cells are the critical units for tissue maintenance, regeneration, and repair. The activation of regenerative events in response to tissue injury has been correlated with mobilization of tissue-resident progenitor cells, which is functional to the wound healing process. However, until now there has been no evidence for the presence of cells with a healing capacity circulating in healthy conditions. We identified a rare cell population present in the peripheral blood of healthy mice that actively participates in tissue repair. These Circulating cells, with a Homing ability and involved in the Healing process (CH cells), were identified by an innovative flowcytometry strategy as small cells not expressing CD45 and lineage markers. Their transcriptome profile revealed that CH cells are unique and present a high expression of key pluripotency- and epiblast-associated genes. More importantly, CH-labeled cells derived from healthy Red Fluorescent Protein (RFP)-transgenic mice and systemically injected into syngeneic fractured wild-type mice migrated and engrafted in wounded tissues, ultimately differentiating into tissue-specific cells. Accordingly, the number of CH cells in the peripheral blood rapidly decreased following femoral fracture. These findings uncover the existence of constitutively circulating cells that may represent novel, accessible, and versatile effectors of therapeutic tissue regeneration.
Identification of a New Cell Population Constitutively Circulating in Healthy Conditions and Endowed with a Homing Ability Toward Injured Sites.
Sex, Specimen part
View SamplesBackground In childhood acute lymphoblastic leukemia (ALL), central nervous system (CNS) involvement is rare at diagnosis (1-4%), but more frequent at relapse (~30%). Minimal residual disease diagnostics predict most bone marrow (BM) relapses, but likely cannot predict isolated CNS relapses. Consequently, CNS relapses may become relatively more important. Because of the significant late sequelae of CNS treatment, early identification of patients at risk of CNS relapse is crucial. Methods Gene expression profiles of ALL cells from cerebrospinal fluid (CSF) and ALL cells from BM were compared and differences were confirmed by real-time quantitative PCR. For a selected set of overexpressed genes, protein expression levels of ALL cells in CSF at relapse and of ALL cells in diagnostic BM samples were evaluated by 8-color flow cytometry. Results CSF-derived ALL cells showed a clearly different gene expression profile than BM-derived ALL cells, with differentially-expressed genes (including SCD and OPN) involved in survival and apoptosis pathways and linked to the JAK-STAT pathway. Flowcytometric analysis showed that a subpopulation of ALL cells (>1%) with a CNS signature (SCD positivity and increased OPN expression) was already present in BM at diagnosis in ALL patients who later developed a CNS relapse, but was <1% or absent in virtually all other patients. Conclusions The presence of a subpopulation of ALL cells with a CNS signature at diagnosis may predict isolated CNS relapse. Such information can be used to design new diagnostic and treatment strategies that aim at prevention of CNS relapse with reduced toxicity.
New cellular markers at diagnosis are associated with isolated central nervous system relapse in paediatric B-cell precursor acute lymphoblastic leukaemia.
Sex, Age, Time
View SamplesExpression profiling of sheep born to Australian industry sires with high and low genetic merit (Estimated Breeding Values or EBVs) for eye muscle depth (EMD). Progeny (40) from six Poll Dorset sires representing well defined extremes of EBVs for Eye Muscle Depth (low EBV EMD and high EBV EMD) were selected for analysis. The six sires were Australian industry sires with three sires representative of low EBV EMD and three representing high EBV EMD.
An Always Correlated gene expression landscape for ovine skeletal muscle, lessons learnt from comparison with an "equivalent" bovine landscape.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Progression from low- to high-grade in a glioblastoma model reveals the pivotal role of immunoediting.
Specimen part
View SamplesThe different phases of tumor immunoediting in vivo were dissected thanks to a murine model of glioma induced by PDGF-B overexpression. We show that low-grade gliomas are highly immunostimulatory and that the adaptive immune system prevents the development of secondary tumor in syngeneic mice. During tumor progression, glioma cells downregulate immunostimulatory genes and the immune infiltrate becomes pro-tumorigenic. We showed that glioma cells are able to progress towards a high-grade phenotype even in immunodeficient mice, albeit more slowly and this progression invariably requires a downregulation of immunostimulatory genes.
Progression from low- to high-grade in a glioblastoma model reveals the pivotal role of immunoediting.
Specimen part
View SamplesThe different phases of tumor immunoediting in vivo were dissected thanks to a murine model of glioma induced by PDGF-B overexpression. We show that low-grade gliomas are highly immunostimulatory and that the adaptive immune system prevents the development of secondary tumor in syngeneic mice. During tumor progression, glioma cells downregulate immunostimulatory genes and the immune infiltrate becomes pro-tumorigenic.
Progression from low- to high-grade in a glioblastoma model reveals the pivotal role of immunoediting.
Specimen part
View SamplesNeuroblastoma is an embryonal tumour of the peripheral sympathetic nervous system (SNS). One of the master regulator genes for peripheral SNS differentiation, the homeobox transcription factor PHOX2B, is mutated in familiar and sporadic neuroblastomas. Here we report that inducible expression of PHOX2B in the neuroblastoma cell line SJNB-8 down-regulates MSX1, a homeobox gene important for embryonic neural crest development. Inducible expression of MSX1 in SJNB-8 caused inhibition of both cell proliferation and colony formation in soft agar. Affymetrix micro- array and Northern blot analysis demonstrated that MSX1 strongly up-regulated the Delta-Notch pathway. These experiments describe for the first time regulation of the Delta-Notch pathway by MSX1, and connect these genes to the PHOX2B oncogene, indicative of a role in neuroblastoma biology.
The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma.
No sample metadata fields
View Samples