The data presented is intended to analyse the changes in the expression profiles of human MSCs (Mesenchymal Stromal/Stem Cells) associated to different tissue specific stimulus.
Insights into the human mesenchymal stromal/stem cell identity through integrative transcriptomic profiling.
Specimen part
View SamplesVitiligo is an acquired depigmentation of the skin inducing a marked alteration of the quality of life of affected individuals. Halting the disease progression and repigmenting the lesional skin represent the two faces of the therapeutic challenge in vitiligo. So far, none of them has been successfully addressed. Oxidative stress and immune system in genetically predisposed individuaLesionalparticipate to the complex pathophysiology of vitiligo. We performed a transcriptome and proteomic analysis on lesional, perilesional and non-depigmented skin of vitiligo patients compared to matched skin controLesionalof healthy subjects. Our results show that the WNT pathway, implicated in melanocytes differentiation, was found to be altered in vitiligo skin. We demonstrated that the oxidative stress decreases WNT expression/activation in keratinocytes and in melanocytes. We developed an ex vivo skin model that remains functional up to 15 days. We then confirmed the decreased activation of the WNT pathway in human skin subjected to oxidative stress. Finally, using pharmacological agents that activate the WNT pathway, we treated the ex vivo depigmented skins from vitiligo patients and successfully induced the differentiation of resident stem celLesionalinto pre-melanocytes supporting further exploration of WNT activators to repigment vitiligo lesions.
Transcriptional Analysis of Vitiligo Skin Reveals the Alteration of WNT Pathway: A Promising Target for Repigmenting Vitiligo Patients.
Specimen part
View SamplesTranscriptome analysis of Ts1Cje (mouse model of Down syndrome) and euploids murine cerebellum during postnatal development
The cerebellar transcriptome during postnatal development of the Ts1Cje mouse, a segmental trisomy model for Down syndrome.
Specimen part
View SamplesAlternative mRNA splicing represents an effective mechanism of regulating gene function and is a key element to increase the coding capacity of the human genome. Today, an increasing number of reports illustrates that aberrant splicing events are common and functionally important for cancer development. However, more comprehensive analyses are warranted to get novel insights into the biology underlying malignancies like e.g. acute myeloid leukemia (AML). Here, we performed a genome-wide screening of splicing events in AML using an exon microarray platform. We analyzed complex karyotype and core binding factor (CBF) AML cases (n=64) in order to evaluate the ability to detect alternative splicing events distinguishing distinct leukemia subgroups. Testing different commercial and open source software tools to compare the respective AML subgroups, we could identify a large number of potentially alternatively spliced transcripts with a certain overlap of the different approaches. Selected candidates were further investigated by PCR and sequence analysis: out of 24 candidate genes studied, we could confirm alternative splice forms in 8 genes of potential pathogenic relevance, such as PRMT1 regulating transcription through histone methylation and participating in DNA damage response, and PTPN6, which encodes for a negative regulator of cell cycle control and apoptosis. In summary, this first large Exon microarray based study demonstrates that transcriptome splicing analysis in AML is feasible but challenging, in particular with regard to the currently available software solutions. Nevertheless, our results show that alternatively spliced candidate genes can be detected, and we provide a guide how to approach such analyses.
A robust estimation of exon expression to identify alternative spliced genes applied to human tissues and cancer samples.
Specimen part, Disease, Disease stage
View SamplesThe C-terminus of CBF-SMMHC, the fusion protein produced by a chromosome 16 inversion in acute myeloid leukemia subtype M4Eo, contains domains for self-mulimerization and transcriptional repression, both of which have been proposed to be important for leukemogenesis by CBF-SMMHC. To test the role of the fusion protein's C-terminus in vivo, we generated knock-in mice expressing a C-terminally truncated CBF-SMMHC (CBF-SMMHCC95). Embryos with a single copy of CBF-SMMHCDC95 were viable and showed no defects in hematopoiesis, while embryos homozygous for the CBF-SMMHCC95 allele had hematopoietic defects and died in mid-gestation, similar to embryos with a single-copy of the full-length CBF-SMMHCC95.
The C-terminus of CBFβ-SMMHC is required to induce embryonic hematopoietic defects and leukemogenesis.
Specimen part
View SamplesWe used manual macrodissection or laser capture microdissection (LCM) to isolate tissue sections of the hippocampus area of Ras-GRF1 wild type and knockout mice brains, and analyzed their transcriptional patterns using commercial oligonucleotide microarrays. Comparison between the transcriptomes of macrodissected and microdissected samples showed that the LCM samples allowed detection of significantly higher numbers of differentially expressed genes, with higher statistical rates of significance. These results validate LCM as a reliable technique for in vivo genomic studies in the brain hippocampus, where contamination by surrounding areas (not expressing Ras-GRF1) increases background noise and impairs identification of differentially expressed genes. Comparison between wild type and knockout LCM hippocampus samples revealed that Ras-GRF1 elimination caused significant gene expression changes, mostly affecting signal transduction and related neural processes. The list of 36 most differentially expressed genes included loci concerned mainly with Ras/G protein signaling and cytoskeletal organization (i.e. 14-3-3/, Kcnj6, Clasp2) or related, cross-talking pathways (i.e. jag2, decorin, strap). Consistent with the phenotypes shown by Ras-GRF1 knockout mice, many of these differentially expressed genes play functional roles in processes such as sensory development and function (i.e. Sptlc1, antiquitin, jag2) and/or neurological development/neurodegeneration processes affecting memory and learning. Indeed, potential links to neurodegenerative diseases such as Alzheimer disease (AD) or Creutzfeldt-Jacobs disease (CJD), have been reported for a number of differentially expressed genes identified in this study (Ptma, Aebp2,Clasp2, Hebp1, 14-3-3/, Csnk1, etc.). These data, together with the previously described role of IRS and insulin (known Ras-GRF1 activators) in AD, warrant further investigation of a potential functional link of Ras-GRF1 to neurodegenerative processes.
Laser microdissection and microarray analysis of the hippocampus of Ras-GRF1 knockout mice reveals gene expression changes affecting signal transduction pathways related to memory and learning.
No sample metadata fields
View SamplesInsight into the role of Insulin-like Growth Factor (IGF) in development of lungs has come from the study of genetically modified mice. IGF1 is a key factor during lung development. IGF1 deficiency in the neonatal mouse causes respiratory failure collapsed alveoli and altered alveolar septa. To further characterize IGF1 function during lung development we analyzed Igf1-/- mouse prenatal lungs in a C57Bl/6 genetic background. Mutant lungs showed disproportional hypoplasia, disorganized extracellular matrix and dilated alveolar capillaries. IGF1 target genes during lung maturation were identified by analyzing RNA differential expression in Igf1-/- lungs using microarrays.
Transcriptome analysis in prenatal IGF1-deficient mice identifies molecular pathways and target genes involved in distal lung differentiation.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Molecular signatures of cardiac defects in Down syndrome lymphoblastoid cell lines suggest altered ciliome and Hedgehog pathways.
Sex, Specimen part
View SamplesMolecular Signatures of cardiac defects in Down syndrome lymphoblastoid cell lines. In this study, we want to identify genes and pathways specifically dysregulated in atrioventricular septal defect and /or atrial septal defect + ventricular septal defect in case of trisomy 21.
Molecular signatures of cardiac defects in Down syndrome lymphoblastoid cell lines suggest altered ciliome and Hedgehog pathways.
Sex, Specimen part
View SamplesMolecular consequences of trisomy in lymphoblastoid cell lines from patients with Down syndrome. This project analyses differentially expressed genes between humans with trisomy 21 and humans without trisomy 21.
Molecular signatures of cardiac defects in Down syndrome lymphoblastoid cell lines suggest altered ciliome and Hedgehog pathways.
Sex, Specimen part
View Samples