Injured skeletal muscle regenerates, but with age or in muscular dystrophies, muscle is replaced by fat. Upon injury, muscle-resident fibro/adipogenic progenitors (FAPs) proliferated and gave rise to adipocytes. These FAPs dynamically produced primary cilia, structures that transduce intercellular cues such as Hedgehog (Hh) signals. Genetically removing cilia from FAPs inhibited intramuscular adipogenesis, both after injury and in a mouse model of Duchenne muscular dystrophy. Blocking FAP ciliation also enhanced myofiber regeneration after injury and reduced myofiber size decline in the muscular dystrophy model. Hh signaling through FAP cilia regulated the expression of TIMP3, a secreted metalloproteinase inhibitor, that inhibited MMP14 to block adipogenesis. A pharmacological mimetic of TIMP3 blocked the conversion of FAPs into adipocytes, pointing to a strategy to combat fatty degeneration of skeletal muscle. We conclude that ciliary Hh signaling by FAPs orchestrates the regenerative response to skeletal muscle injury. Overall design: Transcriptomic profiling using RNAseq was performed on RNA derived from a bipotent, progenitor cell population, called fibro/adipogenic progenitors (FAPs), purified from tibialis anterior muscle 3 days post glycerol injury. Two populations of cells were sequenced, one from wild type muscle (FAP-ctrl) and another from cells in which cilia, using a floxed Ift88 allele, were conditionally deleted (FAP-no cilia). A total of five FAP-ctrl and 3 FAP-no cilia samples were used. The TruSeq Stranded Total RNA Library Prep Kit (Ilumina) was used to generate the library, which was subsequently sequenced using an Illumina 2500 SE 50bp platform and aligned to the GRCm38.78 whole genome using STAR RNAseq aligner. Individual read counts were normalized to the geometric mean read count across all samples using DEseq. Sequencing yielded ~314 million total reads with an average read depth of ~34.9 million reads per sample.
Ciliary Hedgehog Signaling Restricts Injury-Induced Adipogenesis.
Specimen part, Cell line, Subject
View SamplesErythropoiesis in mammals replenishes the circulating red blood cell (RBC) pool from hematopoietic stem/progenitor cells (HSPCs). Two distinct erythropoietic programs have been described. In the first trimester, hematopoietic precursors in the fetal yolk sac follow a primitive pattern of erythropoiesis. However, in the second trimester, hematopoietic stem cells (HSCs) from the fetal liver and later from the bone marrow differentiate by a definitive program of erythropoiesis to yield enucleated erythrocytes. RBCs can also be derived from human induced pluripotent stem cells (hiPSCs) and can express many of the red cell proteins required for normal erythrocyte function, presaging in vitro RBC production for clinical use. However, expansion and enucleation from hiPSCs is less efficient than with erythroblasts (EBs) derived from adult or cord blood progenitors. We hypothesized that substantial differential gene expression during erythroid development from hiPSCs compared to that from adult blood or cord blood precursors could account for these hitherto unexplained differences in proliferation and enucleation. We have therefore grown EBs from human adult and cord blood progenitors and from hiPSCs. Gene expression during erythroid culture from each erythroblast source was analyzed using algorithms designed to cluster co-expressed genes in an unsupervised manner and the function of differentially expressed genes explored by gene ontology. Using these methods we identify specific patterns of gene regulation for adult- and cord- derived EBs, regardless of the medium used, that are substantially distinct from those observed during the differentiation of EBs from hiPSC progenitors which largely follows a pattern of primitive erythropoiesis.
Distinct gene expression program dynamics during erythropoiesis from human induced pluripotent stem cells compared with adult and cord blood progenitors.
Specimen part
View SamplesZinc is an essential micronutrient in pregnancy and zinc deficiency impairs fetal growth. We used a mouse model of moderate zinc deficiency to determine how zinc is important to placental morphogenesis.
Zinc is a critical regulator of placental morphogenesis and maternal hemodynamics during pregnancy in mice.
Specimen part
View SamplesRNA-seq transcriptome analysis identified a functional requirement for zebrafish Rfx4 in the developing neural floor plate and roof plate. Overall design: Embryos derived from an rfx4uw8013/+ incross were sorted by phenotype into mutant and sibling groups. RNA was prepared from each individual embryo at ~ 25 hpf
Zebrafish Rfx4 controls dorsal and ventral midline formation in the neural tube.
No sample metadata fields
View SamplesThe goal of this project was to analyze differential expression in head and neck cancer cells with various intrinsic radiosensitivity. The gene expression profiles of the cell lines were determined using the Human Genome U133 plus 2.0 Arrays (Affymetrix, Santa Clara, CA).
Fibronectin 1 is a potential biomarker for radioresistance in head and neck squamous cell carcinoma.
Specimen part, Cell line
View SamplesRNA-seq transcriptome analysis identified an early requirement for zic2 in periocular neural crest as an activator of alx1, a transcription factor with essential roles in craniofacial and ocular morphogenesis in human and zebrafish Overall design: Embryos derived from a zic2aGBT133/+; zic2bUW1127/+ incross were sorted by presence or absence of coloboma. RNA was prepared from each individual embryo at ~ 25 hpf
Zebrafish zic2 controls formation of periocular neural crest and choroid fissure morphogenesis.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Regulation of the ovarian inflammatory response at ovulation by nuclear progesterone receptor.
No sample metadata fields
View SamplesOvulation requires sequential molecular events and structural remodeling in the ovarian follicle for the successful release of a mature oocyte capable of being fertilised. Critical to this process is progesterone receptor (PGR), a transcription factor highly yet transiently expressed in granulosa cells of preovulatory follicles. Progesterone receptor knockout (PRKO) mice are anovulatory, with a specific and complete defect in follicle rupture. Therefore, this model was used to examine the critical molecular and biochemical mechanisms necessary for successful ovulation.
Regulation of the ovarian inflammatory response at ovulation by nuclear progesterone receptor.
No sample metadata fields
View SamplesOvulation requires sequential molecular events and structural remodeling in the ovarian follicle for the successful release of a mature oocyte capable of being fertilised. Critical to this process is progesterone receptor (PGR), a transcription factor highly yet transiently expressed in granulosa cells of preovulatory follicles. Progesterone receptor knockout (PRKO) mice are anovulatory, with a specific and complete defect in follicle rupture. Therefore, this model was used to examine the critical molecular and biochemical mechanisms necessary for successful ovulation.
Regulation of the ovarian inflammatory response at ovulation by nuclear progesterone receptor.
No sample metadata fields
View SamplesImmune system homeostasis depends on signals that drive effector (like secretion of pro-inflammatory cytokines like IFNg) and regulatory (like secretion of the anti-inflammatory cytokine IL-10) functions.
The cholesterol biosynthesis pathway regulates IL-10 expression in human Th1 cells.
Specimen part, Subject
View Samples