Background and aims: Hepatitis C virus (HCV) infection is a major cause of liver disease including steatosis, fibrosis and liver cancer. Viral cure cannot fully eliminate the risk of disease progression and hepatocellular carcinoma (HCC) in advanced liver disease. The mechanisms for establishment of infection, liver disease progression and hepatocarcinogenesis are only partially understood. To address these questions, we probed the functional proteogenomic architecture of HCV infection within a hepatocyte-model. Methods: Time-resolved HCV infection of hepatocyte-like cells was analyzed by RNA sequencing, proteomics, metabolomics, and leveraged by integrative genomic analyses. Using differential expression, gene set enrichment analyses, and protein-protein interaction mapping we identified pathways relevant for liver disease pathogenesis that we validated in livers of 216 cirrhotic patients with HCV. Results: We uncovered marked changes in the protein expression of gene sets involved in innate immunity, metabolism and hepatocarcinogenesis. In infected cells, HCV enhances glucose metabolism and creates a Warburg-like shift of the lactate flux. HCV infection impaired the formation of peroxisomes -organelles required for long-chain fatty acid oxidation- causing intracellular fatty acid accumulation, which is a hallmark of non-alcoholic fatty liver disease (NAFLD). Ex vivo studies confirmed perturbed peroxisomes and revealed an association of hepatic catalase expression with clinical outcomes and phenotypes in HCV-associated cirrhosis, NAFLD and HCC cohorts. Conclusion: Our integrative analyses uncover how HCV perturbs the hepatocyte cell circuits to drive chronic liver disease and hepatocarcinogenesis. This proteogenomic atlas of HCV infection provides a model for the discovery of novel drivers for viral- and non-viral induced liver disease. Overall design: mRNA profiles of either mock or HCV-infected Huh7.5.1dif cells, performed in triplicates and collected every day between days 0 and 10 post infection. HCV infection reached plateau at day 7 post infection (pi). After day 7 pi unspecific effects cannot be excluded.
Combined Analysis of Metabolomes, Proteomes, and Transcriptomes of Hepatitis C Virus-Infected Cells and Liver to Identify Pathways Associated With Disease Development.
Cell line, Subject
View SamplesUstekinumab provides clinical benefit to psoriasis patients, but precise cellular and molecular changes underlying its therapeutic utility are not yet fully understood. To assess differences between ustekinumab responders vs. non responders in modulating specific inflammatory pathways and provide reference data for exploring molecular effects of next-generation interleukin(IL)-17 and IL-23-antagonists in psoriasis.
Modulation of inflammatory gene transcripts in psoriasis vulgaris: Differences between ustekinumab and etanercept.
Specimen part, Treatment, Subject, Time
View SamplesA gene expression profiling sub-study was conducted in which skin biopsy samples (n=192) were collected for RNA extraction and hybridization to microarrays from patients with moderate-to-severe psoriasis who participated in ACCEPT, an IRB-approved Phase 3, multicenter, randomized trial.
Modulation of inflammatory gene transcripts in psoriasis vulgaris: Differences between ustekinumab and etanercept.
Specimen part, Treatment, Subject, Time
View SamplesThis study was designed to address key questions concerning the use of alternative protein sources for animal feeds and addresses aspects such as their nutrient composition and impact on gut function, the immune system and systemic physiology. We used casein (CAS), partially delactosed whey powder (DWP), spray dried porcine plasma (SDPP), soybean meal (SBM), wheat gluten meal (WGM) and yellow meal worm (YMW) as protein sources.
Multi-Level Integration of Environmentally Perturbed Internal Phenotypes Reveals Key Points of Connectivity between Them.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Epigenetic Networks Regulate the Transcriptional Program in Memory and Terminally Differentiated CD8+ T Cells.
Specimen part, Treatment
View SamplesEpigenetic mechanisms play a critical role during differentiation of T cells by contributing to the formation of stable and heritable transcriptional patterns. To further study the mechanisms of memory maintenance in CD8+ T cells, we performed genome-wide analysis of DNA methylation, histone marking (H3K9Ac and H3K9me3) and gene expression profiles in naive, effector memory (EM) and terminally differentiated memory (TEMRA) cells. Our results indicate that DNA demethylation and histone acetylation are coordinated to generate the transcriptional program associated with memory cells. Conversely, EM and TEMRA cells share a very similar epigenetic landscape. Nonetheless, the TEMRA transcriptional program predicts an innate immunity phenotype associated with genes never reported in these cells, including several mediators of NK cell activation (VAV3 and LYN) and a large array of NK receptors (KIR2DL3, KIR2DL4, KIR2DL1, KIR3DL1, KIR2DS5, etc.). In addition, we identified up to 161 genes that encode transcriptional regulators, some of unknown function in CD8+ T cells, that were differentially expressed in the course of differentiation. Overall, these results provide new insights into the regulatory networks involved in memory CD8+ T cell maintenance and T cell terminal differentiation.
Epigenetic Networks Regulate the Transcriptional Program in Memory and Terminally Differentiated CD8+ T Cells.
Specimen part
View SamplesEpigenetic mechanisms play a critical role during differentiation of T cells by contributing to the formation of stable and heritable transcriptional patterns. To further study the mechanisms of memory maintenance in CD8+ T cells, we performed genome-wide analysis of DNA methylation, histone marking (H3K9Ac and H3K9me3) and gene expression profiles in naive, effector memory (EM) and terminally differentiated memory (TEMRA) cells. Our results indicate that DNA demethylation and histone acetylation are coordinated to generate the transcriptional program associated with memory cells. Conversely, EM and TEMRA cells share a very similar epigenetic landscape. Nonetheless, the TEMRA transcriptional program predicts an innate immunity phenotype associated with genes never reported in these cells, including several mediators of NK cell activation (VAV3 and LYN) and a large array of NK receptors (KIR2DL3, KIR2DL4, KIR2DL1, KIR3DL1, KIR2DS5, etc.). In addition, we identified up to 161 genes that encode transcriptional regulators, some of unknown function in CD8+ T cells, that were differentially expressed in the course of differentiation. Overall, these results provide new insights into the regulatory networks involved in memory CD8+ T cell maintenance and T cell terminal differentiation.
Epigenetic Networks Regulate the Transcriptional Program in Memory and Terminally Differentiated CD8+ T Cells.
Specimen part, Treatment
View SamplesIn this study, we sought to determine how IL-17 and TNF influence normal human melanocytes, either alone, or with both cytokines together. We reveal a dichotomous effect of IL-17 and TNF, which not only elicit essential mitogenic cytokines but also suppress melanogenesis by down-regulating genes of melanogenesis pathway
IL-17 and TNF synergistically modulate cytokine expression while suppressing melanogenesis: potential relevance to psoriasis.
Specimen part, Treatment, Time
View SamplesProliferation of prostate cancer cells, LNCaP, is suppressed by casodex. This suppression requires expression of AR coregulator, NCOR1.
Nuclear Receptor Corepressor 1 Expression and Output Declines with Prostate Cancer Progression.
Specimen part, Cell line
View SamplesAR transcriptional activity is regulated by DHT
Nuclear Receptor Corepressor 1 Expression and Output Declines with Prostate Cancer Progression.
Specimen part, Cell line
View Samples