Multipotent stem cells and their lineage-restricted progeny drive nephron formation within the developing kidney. Validated markers of these early stem/progenitor populations are essential for deciphering their in vivo function and for evaluating their clinical potential for treating adult kidney disease. Here, we document expression of the adult stem cell marker Lgr5 in the developing kidney and assess the stem/progenitor identity of Lgr5+ve cells via in vivo lineage tracing. The appearance and localization of Lgr5+ve cells coincided with that of the S-shaped body around E14. Lgr5 expression remained restricted to cell clusters within developing nephrons in the cortex until P7, when expression was permanently silenced. In vivo lineage tracing identified Lgr5 as a marker of a novel progenitor population within nascent nephrons dedicated to generating the thick ascending limb of Henle's loop and distal convoluted tubule. The Lgr5 surface marker and experimental models described here will be invaluable for deciphering the contribution of early nephron stem cells to developmental defects and for isolating human nephron progenitors as a prerequisite to evaluating their therapeutic potential.
Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development.
Specimen part
View SamplesAdult Stem Cell (ASC )-derived organoids are 3D epithelial structures that recapitulate essential aspects of their organ of origin. We have developed conditions for the long-term growth of primary kidney tubular epithelial organoids ('tubuloids'). Cultures can be established from mouse and human kidney tissue, as well as from urine and can be expanded for at least 20 passages (> 6 months). The structures retain a normal number of chromosomes. Human tubuloids represent proximal as well as distal nephron segments, as evidenced by gene expression, immunofluorescence and tubular functional analyses. BK virus infection of tubuloids recapitulates in vivo phenomena. "Tumoroids" can be established from Wilms nephroblastoma. Kidney tubuloids from urine from a subject with Cystic Fibrosis (CF) allows ex vivo assessment of treatment efficacy. Finally, tubuloids cultured on microfluidic organ-on-a-chip plates adopt a tubular conformation and display active (trans-)epithelial transport function. Adult kidney-derived epithelial tubuloids allow studies of hereditary, infectious and malignant kidney disease in a personalized fashion. Overall design: We generated single cell transcriptome data of kidney tubuloids and the tissue that the tubuloids were derived from
Tubuloids derived from human adult kidney and urine for personalized disease modeling.
Specimen part, Subject
View SamplesAdult Stem Cell (ASC )-derived organoids are 3D epithelial structures that recapitulate essential aspects of their organ of origin. We have developed conditions for the long-term growth of primary kidney tubular epithelial organoids ('tubuloids'). Cultures can be established from mouse and human kidney tissue, as well as from urine and can be expanded for at least 20 passages (> 6 months). The structures retain a normal number of chromosomes. Human tubuloids represent proximal as well as distal nephron segments, as evidenced by gene expression, immunofluorescence and tubular functional analyses. BK virus infection of tubuloids recapitulates in vivo phenomena. "Tumoroids" can be established from Wilms nephroblastoma. Kidney tubuloids from urine from a subject with Cystic Fibrosis (CF) allows ex vivo assessment of treatment efficacy. Finally, tubuloids cultured on microfluidic organ-on-a-chip plates adopt a tubular conformation and display active (trans-)epithelial transport function. Adult kidney-derived epithelial tubuloids allow studies of hereditary, infectious and malignant kidney disease in a personalized fashion. Overall design: We generated transcriptome data of kidney tubuloids and the tissue that the tubuloids were derived from
Tubuloids derived from human adult kidney and urine for personalized disease modeling.
Specimen part, Subject
View SamplesPhytophthora cinnamomi is a devastating soil-borne oomycete with a very broad host range however there remains a major gap in the understanding of plant resistance responses to the pathogen, furthermore, necrotrophic plant-pathogen interactions, particularly those of root pathogens, remain poorly understood. Zea mays exhibits non-host resistance to the pathogen and has been well characterised as a model species. Using the maize Affymetrix GeneChip array we conducted genome-wide gene expression profiling to elucidate the defence genes and pathways which are induced in the root tissue of a resistant plant species to the pathogen.
Transcriptional profiling of Zea mays roots reveals roles for jasmonic acid and terpenoids in resistance against Phytophthora cinnamomi.
Specimen part, Time
View SamplesComparison of gene expression profile of E. coli 83972 grown in minimal lab media, in urine and in 3 individual patients.
Global gene expression profiling of the asymptomatic bacteriuria Escherichia coli strain 83972 in the human urinary tract.
No sample metadata fields
View SamplesIdentification of genes differentially expressed in roots of Arabidopsis Col-0 and ndr1-1 mutants 48 h post inoculation with the fungal pathogen Verticillium longisporum.
Susceptibility to Verticillium longisporum is linked to monoterpene production by TPS23/27 in Arabidopsis.
Age, Specimen part, Time
View SamplesDetection of single feature polymorphisms comparing five barley genotypes. Gene expression under unstressed and drought stressed conditions.
Detecting single-feature polymorphisms using oligonucleotide arrays and robustified projection pursuit.
No sample metadata fields
View SamplesThe in vitro effect of infection with different strains of Toxoplasma gondii was tested 24 hours after infection of Human Foreskin Fibroblasts (HFF)
Integrative genomic approaches highlight a family of parasite-specific kinases that regulate host responses.
No sample metadata fields
View SamplesWe used microarray to compare global gene expression profiles between 5 GNAQ/11 mutant uveal melanoma cell lines (GNAQ mutant: 92-1, omm1.3, mel270; GNA11 mutant: omm-gn11 and upmd-1) and 5 GNAQ/11 wild type melanoma cell lines(sk-mel-2, mm415, mm485, sk-mel-5 and mum2c). Uveal melanoma is the most common intraocular tumor that mainly metastasizes to the liver in about 50% patients. Over 80% of UMs harbor GNAQ or GNA11 activating mutation. Currently there is no effective treatment available for UM patients. Results provide insights into downstream signaling of oncogenic GNAQ/11 and identification of therapeutic targets in UM.
RasGRP3 Mediates MAPK Pathway Activation in GNAQ Mutant Uveal Melanoma.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Differential induction of TLR3-dependent innate immune signaling by closely related parasite species.
Specimen part, Cell line
View Samples