Despite their distinct biology, granulosa cell tumours (GCTs) are treated the same as other ovarian tumours. Intriguingly, a recurring somatic mutation in the transcription factor Forkhead Box L2 (FOXL2) 402C>G has been found in nearly all GCTs examined. This investigation aims to identify the pathogenicity of mutant FOXL2 by studying its altered transcriptional targets. The expression of mutant FOXL2 was reduced in the GCT cell line KGN, and wildtype and mutant FOXL2 were overexpressed in the GCT cell line COV434. Comparisons were made between the transcriptomes of control cells and cells altered by FOXL2 knockdown and overexpression, to detect potential transcriptional targets of mutant FOXL2. Comparisons were made between the transcriptomes of control cells and cells altered by FOXL2 knockdown and overexpression, to detect potential transcriptional targets of mutant FOXL2.
The transcriptional targets of mutant FOXL2 in granulosa cell tumours.
Cell line
View SamplesAntiphospholipid antibodies, a maternal risk factor for preeclampsia, increase shedding of necrotic trophoblast debris from the placenta, leading to endothelial dysfunction. Using Affymetrix HGU133 Plus 2 microarrays, we found changes in the transcriptome of placental explants treated with antiphospholipid antibodies including seven mRNAs encoding for genes BCL2L1, MCL1, PDCD2L, FASLG, SEMA6A, PRKCE and TRAIL that are involved in the regulation of apoptosis. Quantitative real-time RT-PCR and immunohistochemistry confirmed a reduction in TRAIL expression. These results may help to understand how antiphospholipid antibodies affect trophoblast cell death and how the antibodies could contribute to the pathogenesis of preeclampsia.
Transcriptomic analysis of placenta affected by antiphospholipid antibodies: following the TRAIL of trophoblast death.
Specimen part, Treatment
View SamplesMaggot ES is known to induce wound healing in vivo to improve chronic wound repair. The effects have been studies at the protein and molecular level but never before at the transcriptional level.
The transcriptional responses of cultured wound cells to the excretions and secretions of medicinal Lucilia sericata larvae.
Specimen part, Cell line
View SamplesThe multi-ligand Receptor for AGE (RAGE) contributes to atherosclerosis in apolipoprotein (ApoE) null mice in both the non-diabetic and diabetic states. Previous studies using soluble RAGE, the extracellular ligand-binding domain of RAGE, or homozygous RAGE null mice showed that blockade or deletion of RAGE resulted in marked reduction in atherosclerotic lesion area and complexity compared to control animals. In parallel, significant down-regulation of inflammatory mediators and matrix metalloproteinases was evident in ApoE null mice aortas devoid of RAGE compared to those of ApoE null RAGE-expressing mice. Although these findings suggested that RAGE triggered pro-atherogenic mechanisms via regulation of inflammatory gene expression, these studies did not reveal the broader pathways by which RAGE contributed to atherosclerosis in ApoE null mice.
Activation of the ROCK1 branch of the transforming growth factor-beta pathway contributes to RAGE-dependent acceleration of atherosclerosis in diabetic ApoE-null mice.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesSmall molecule curaxin CBL0137 has broad anti-cancer activity in different preclinical models. It interferes with histone-DNA interactions via binding to DNA without causing DNA damage. It resposents first in class "chromatin damaging" agent without genotoxic properties. Its effect on the transcription in human tumor cells was evaluated. DNA-targeting small molecules are widely used for anticancer therapy based on their ability to induce cell death, presumably via DNA damage. DNA in the eukaryotic cell is packed into chromatin, a highly-ordered complex of DNA, histones, and non-histone proteins. These agents perturb chromatin organization. However, the mechanisms, consequences, and impact of the alterations of chromatin structure in relation to their anti-cancer activity is unclear because it is difficult to separate DNA damage and chromatin damage in cells. We recently demonstrated that curaxins, small molecules with broad anticancer activity, bind DNA without causing detectable DNA damage by interfering with histone/DNA interactions and destabilizing the nucleosome. Chromatin unfolding caused by curaxins is sensed by histone chaperone FACT. FACT binds unfolded nucleosomes, which leads to chromatin trapping or c-trapping. In this study, we investigated whether other DNA-targeting small molecules disturb chromatin and cause c-trapping. We found that only compounds directly binding DNA induce chromatin damage and c-trapping. Chromatin damage may occur in the absence of DNA damage and is dependent on the mechanism of compound binding to DNA and its ability to bind chromatinized DNA in cells. We show that FACT is sensitive to a plethora of nucleosomes perturbations induced by DNA-binding small molecules, including displacement of the linker histone, eviction of core histones, and accumulation of negative supercoiling. Most importantly, the cytotoxicity of DNA-binding small molecules correlates with their ability to cause chromatin damage , but not DNA damage. Overall design: HT1080 cells were treated with CBL0137 for 1 hour at 1uM. EU was added for the last 15 minutes. Newly synthesized RNA was isolated using Click-iTâ„¢ Nascent RNA Capture Kit (Invitrogen, cat#C10365) according to manufacturer instruction.
Prevention of Chromatin Destabilization by FACT Is Crucial for Malignant Transformation.
Cell line, Subject
View SamplesAnalysis of transcriptomic profile of TS cells grown in ambient (21% oxygen) and hypoxic (0.5% oxygen) conditions.
HIF-KDM3A-MMP12 regulatory circuit ensures trophoblast plasticity and placental adaptations to hypoxia.
Specimen part, Treatment
View SamplesAnalysis of transcriptomic profile of metrial gland tissue in ambient (21% oxygen) and hypoxic (10.5% oxygen) conditions.
HIF-KDM3A-MMP12 regulatory circuit ensures trophoblast plasticity and placental adaptations to hypoxia.
Specimen part, Treatment
View SamplesCTCF is a master regulator that plays a role in genome architecture and gene expression. A key aspect of CTCF’s mechanism involves bringing together distant genetic elements for intra- and inter-chromosomal interactions. Evidence from epigenetic processes, such as X-chromosome inactivation (XCI), suggests that CTCF may carry out its functions through interacting RNAs. Using genome-wide approaches to investigate the relationship between CTCF’s RNA interactome and its epigenomic landscape, here we report that CTCF interacts with thousands of transcripts in mouse embryonic stem cells (mESC), many in close proximity to CTCF’s genomic binding sites. Biochemical analysis demonstrates that CTCF is a high-affinity RNA binding protein that contacts RNA directly and specifically. In the XCI model, CTCF binds the active and inactive X-chromosomes allele-specifically. At the X-inactivation center, Tsix RNA binds CTCF and targets CTCF to a region associated with X-chromosome pairing. Our work implicates CTCF-RNA interactions in long-range chromosomal interactions in trans and adds a new layer of complexity to CTCF regulation. The genome-wide datasets reported here will provide a useful resource for further study of CTCF-mediated epigenomic regulation. Overall design: CTCF RNA interactome was identified by UV-crosslinking and immunoprecipitation followed by high-throughput sequencing (CLIP-seq), and was compared to CTCF''s epigenomic landscape as obtained by chromatin immunoprecipitation (ChIP-seq).
Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The miR-96 and RARγ signaling axis governs androgen signaling and prostate cancer progression.
Sex, Specimen part, Cell line, Treatment
View SamplesExpression levels of retinoic acid receptor gamma (NR1B3/RARG, encodes RARG), are commonly reduced in prostate cancer (PCa). Therefore we sought to establish the cellular and gene regulatory consequences of reduced RARG expression, and determine RARG regulatory mechanisms. RARG shRNA approaches in non-malignant (RWPE-1 and HPr1-AR) and malignant (LNCaP) prostate models revealed that reducing RARG levels, rather than adding exogenous retinoid ligand, had the greatest impact on prostate cell viability and gene expression. ChIP-Seq defined the RARG cistrome which was significantly enriched at active enhancers associated with AR binding sites. Reflecting a significant genomic role for RARG to regulate androgen signaling, RARG knockdown in HPr1-AR cells significantly regulated the magnitude of the AR transcriptome. RARG down-regulation was explained by increased miR-96 in PCa cell and mouse models, and TCGA PCa cohorts. Biochemical approaches confirmed that miR-96 directly regulated RARG expression and function. Capture of the miR-96 targetome by biotin-miR96 identified that RARG and a number of RARG interacting co-factors including TACC1 were all targeted by miR-96, and expression of these genes were prominently altered, positively and negatively, in the TCGA-PRAD cohort. Differential gene expression analyses between tumors in the TCGA-PRAD cohort with lower quartile expression levels of RARG and TACC1 and upper quartile miR-96, compared to the reverse, identified a gene network including several RARG target genes (e.g. SOX15) that significantly associated with worse disease free survival (hazard ratio 2.23, 95% CI 1.58 to 2.88, p=0.015). In summary, miR-96 targets a RARG network to govern AR signaling, PCa progression and disease outcome.
The miR-96 and RARγ signaling axis governs androgen signaling and prostate cancer progression.
Sex, Specimen part, Cell line, Treatment
View Samples