Generation of abundant engraftable hematopoietic cells from autologous tissues promises new therapies for hematologic diseases. Differentiation of pluripotent stem cells into hematopoietic cells results in emergence of cells that have poor engraftment potential. To circumvent this hurdle, we have devised a vascular niche model to phenocopy the developmental microenvironment of hemogenic cells thereby enabling direct transcriptional reprogramming of human endothelial cells (ECs) into hematopoietic cells. In this approach, transduction of human umbilical vein ECs (HUVECs) or adult human dermal microvascular ECs (hDMECs) with transcription factors (TFs), FOSB, GFI1, RUNX1, and SPI1 (FGRS) and induction with a instructive vascular niche feeder layer in a xenobiotic- and serum-free microenvironment results in generation of long-term engraftable hematopoietic multilineage progenitors (rEC-HMLPs). The rEC-HMLPs had robust proliferative and multilineage colony forming units (CFU) potential, including granulocytic/monocytic, megakaryocytic, erythroid and lymphoid lineages. When transplanted, hDMEC-derived rEC-HMLPs were capable of long-term multilineage primary and secondary hematopoietic engraftment. A subset of engrafted rEC-HMLPs phenotypically and functionally resembled cord blood cells. By conditionally expressing the FGRS TFs, we further optimized reprogramming of ECs into rEC-HMLPs manifesting features of self-renewing multi-potent progenitor populations (MPPs). Our approach replicates critical aspects of hematopoietic development and essential role of vascular niche induction in orchestrating hematopoietic specification and may prove useful for engineering autologous engraftable hematopoietic cells for treatment of inherited and acquired blood disorders. . Overall design: Transcriptome sequencing of rEC-HMLPs, hDMECs, HUVECs and other cell types
Wnt inhibition promotes vascular specification of embryonic cardiac progenitors.
No sample metadata fields
View SamplesMature oocyte cytoplasm can reprogram somatic cell nuclei to the pluripotent state through a series of sequential events including protein exchange between the donor nucleus and ooplasm, chromatin remodeling, and pluripotency gene reactivation. Maternal factors that are responsible for this reprogramming process remain largely unidentified. Here, we demonstrate that knockdown of histone variant H3.3 in mouse oocytes results in compromised reprogramming and down-regulation of key pluripotency genes; and this compromised reprogramming both for developmental potentials and transcription of pluripotency genes can be rescued by injecting exogenous H3.3 mRNA, but not H3.2 mRNA into oocytes in somatic cell nuclear transfer (SCNT) embryos. We show that maternal H3.3, and not H3.3 in the donor nucleus, is essential for successful reprogramming of somatic cell nucleus into the pluripotent state. Furthermore, H3.3 is involved in this reprogramming process by remodeling the donor nuclear chromatin through replacement of donor nucleus-derived H3 with de novo synthesized maternal H3.3 protein. Our study shows that H3.3 is a crucial maternal factor for oocyte reprogramming and provides a practical model to directly dissect the oocyte for its reprogramming capacity. Overall design: Transcriptome sequencing of 4-cell NT embryos, Luciferase 4-cell SCNT embryos, 4-cell NT embryos_H3.3KD, 4-cell NT embryos_H3.3KD+H3.3mRNA, H3.3 KD + H3.2 mRNA SCNT embryos
Histone variant H3.3 is an essential maternal factor for oocyte reprogramming.
No sample metadata fields
View SamplesThe pathways involved in hierarchical differentiation of human embryonic stem cells (hESC) into abundant and durable endothelial cells (EC) are unknown. We employed an EC-specific VE-cadherin promoter driving GFP (hVPr-GFP) to screen for factors that augmented yields of vascular-committed ECs from hESCs. In phase 1 of our approach, inhibition of TGFb, precisely at day 7 of hESC differentiation, enhanced emergence of hVPr-GFP+ ECs by 10-fold. In the second phase, TGFb-inhibition preserved proliferation and vascular identity of purified ECs, resulting in net 36-fold expansion of homogenous EC-monolayers, and allowing transcriptional profiling that revealed a unique angiogenic signature defined by the VEGFR2highId1highVE-cadherin+EphrinB2+CD133+HoxA9- phenotype. Using an Id1-YFP hESC reporter line, we showed that TGFb-inhibition sustained Id1 expression in hESC-derived ECs, which was required for increased proliferation and preservation of EC commitment. These data provide a multiphasic method for serum-free differentiation and long-term maintenance of authentic hESC-derived ECs, establishing clinical-scale generation of transplantable human ECs.
Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFbeta inhibition is Id1 dependent.
Specimen part
View SamplesH3.3-mediated paternal chromatin remodeling is essential for the development of preimplantation embryos and the activation of the paternal genome during embryogenesis. Overall design: We collected embryos of WT, mH3.3KD and H3.3-addback at 50h after ICSI (8-cell or 16-cell stage). RNA-seq results confirmed excellent knockdown of both H3.3A and H3.3B mRNAs in mH3.3KD and H3.3-addback embryos.
Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos.
Cell line, Subject
View SamplesRapid responses to biotic and abiotic insults are crucial for plant survival. We examined the very early (10 min) wound transcriptome in order to increase our understanding regarding this critical intial phase of the plant response to stress. Our analysis revealed a rapid induction of stress-related transcripts that was distinct from the long term events which are dominated by jasmonic pathway responses.
Singlet oxygen signatures are detected independent of light or chloroplasts in response to multiple stresses.
Specimen part
View SamplesEndothelial cells from nine steady state tissues and two regenerating tissues (bone marrow and liver) were intravitally labeld, isolated via flow sorting, and immediately processed for RNA extraction.
Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration.
Sex, Specimen part, Treatment, Time
View SamplesIn the marrow and lymphatic tissues, chronic lymphocytic leukemia (CLL) cells interact with accessory cells that constitute the leukemia microenvironment. In lymphatic tissues, CLL cells are interspersed with CD68+ nurselike cells (NLC) and T cells. However, the mechanism regulating co-localization of CLL cells and these accessory cells are largely unknown. To dissect the molecular cross-talk between CLL and NLC, we profiled the gene expression of CD19-purified CLL cells before and after co-culture with NLC. NLC co-culture induced high-level expression of B cell maturation antigen (BCMA) and two chemoattractants (CCL3, CCL4) by CLL cells. Supernatants from CLL-NLC co-cultures revealed high CCL3/CCL4 protein levels. B cell receptor triggering also induced a robust induction of CCL3 and CCL4 expression by CLL cells, which was almost completely abrogated by a specific Syc inhibitor, R406. High CCL3 and CCL4 plasma levels in CLL patients suggest that activation of this pathway plays a role in vivo. These studies reveal a novel mechanism of cross-talk between CLL cells and their microenvironment, namely the secretion of two T cell chemokines by CLL-NLC interaction and in response to BCR stimulation. Through these chemokines, CLL cells can recruit accessory cells, and thereby actively create a microenvironment that favors their growth and survival.
High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation.
No sample metadata fields
View SamplesDevelopmental pathways that orchestrate the fleeting transition of endothelial cells into haematopoietic stem cells remain undefined. Here we demonstrate a tractable approach for fully reprogramming adult mouse endothelial cells to haematopoietic stem cells (rEC-HSCs) through transient expression of the transcription-factor-encoding genes Fosb, Gfi1, Runx1, and Spi1 (collectively denoted hereafter as FGRS) and vascular-niche-derived angiocrine factors. The induction phase (days 0-8) of conversion is initiated by expression of FGRS in mature endothelial cells, which results in endogenous Runx1 expression. During the specification phase (days 8-20), RUNX1+ FGRS-transduced endothelial cells commit to a haematopoietic fate, yielding rEC-HSCs that no longer require FGRS expression. The vascular niche drives a robust self-renewal and expansion phase of rEC-HSCs (days 20-28). rEC-HSCs have a transcriptome and long-term self-renewal capacity similar to those of adult haematopoietic stem cells, and can be used for clonal engraftment and serial primary and secondary multi-lineage reconstitution, including antigen-dependent adaptive immune function. Inhibition of TGF? and CXCR7 or activation of BMP and CXCR4 signalling enhanced generation of rEC-HSCs. Pluripotency-independent conversion of endothelial cells into autologous authentic engraftable haematopoietic stem cells could aid treatment of haematological disorders. Overall design: Expression profiling by high throughput sequencing data; GPL17021 Illumina HiSeq 2500 (Mus musculus)
Conversion of adult endothelium to immunocompetent haematopoietic stem cells.
Specimen part, Subject
View SamplesPrimary diffuse large B cell lymphomas of different immune-privileged sites (IP-DLBCL) share many clinical and biological features, such as a relatively poor prognosis, preferential dissemination to other immune-privileged sites and deletion of the HLA region, which suggests that IP-DLBCL represents a separate entity. To further investigate the nature of IP-DLBCL, we investigated site-specific genomic aberrations in 16 testicular, 9 central nervous system (CNS) and 15 nodal DLBCL using array-CGH. We also determined minimal common regions of gain and loss. Using robust algorithms, the array-CGH data were combined with gene expression data to explore pathways deregulated by chromosomal aberrations.
Genomic alterations and gene expression in primary diffuse large B-cell lymphomas of immune-privileged sites: the importance of apoptosis and immunomodulatory pathways.
Specimen part
View SamplesIdentification of potential tumor suppressor genes using the GINI strategy in Mantle Cell Lymphoma cell lines
Inactivation of RB1 in mantle-cell lymphoma detected by nonsense-mediated mRNA decay pathway inhibition and microarray analysis.
No sample metadata fields
View Samples