NSAIDs and ACE that affect prostaglandin synthesis are widely used by pregnant women. Epidemiological studies have hypothesized a potential relation of testis dysgenesis syndromes such as cryptorchidism and hypospadias to exposure to these molecules during both the first and the second trimesters of gestation. To decipher whether the embryonic gonads themselves are targets for these molecules, we analysed the impact of precocious in utero exposure to NSAIDs and ACE alone or in combination on the early development of the testis during sex determination, using therapeutic doses similar to those administrated in human medications. We found that in utero exposure to ACE, aspirin or ibuprofen affects the germ cell proliferation in embryonic testis. The whole transcriptome of 13.5 dpc (days post coïtum) treated testis suggests different mechanisms of action of these drugs and a functional interaction between both molecules used in combination, in accelerating the germ cell differentiation. We identified that ACE and ibuprofen exposure through the up-regulation of Dnmt3L expression induces advanced epigenetic reprograming of the germline and enhanced glycogen storage within the testis cords through the activation of extracellular matrix genes expression. In addition, we identified for the first time the prostaglandin production pattern in the embryonic gonad and showed that PGD2, PGE2 and PGI2 were the targets of ACE and NSAIDs drugs. These features might affect the formation and maturation of postnatal testis and secondary reproductive organs leading to male infertility in adult age. Overall design: examination of the impact of in utero exposure to NSAIDs and ACE on testis organogenesis
Intergenerational effects on mouse sperm quality after in utero exposure to acetaminophen and ibuprofen.
Specimen part, Cell line, Treatment, Subject
View SamplesExpression profiles at various time points after surgical intervention for pressure-overload induced cardiac hypertrophy and failure.
Small proline-rich protein 1A is a gp130 pathway- and stress-inducible cardioprotective protein.
Sex, Age, Specimen part, Disease, Disease stage, Subject
View SamplesThe basic unit of genome packaging is the nucleosome, and nucleosomes have long been proposed to restrict DNA accessibility both to damage and to transcription. However, nucleosome number in cells was considered fixed, and no condition was described where nucleosome number was reduced. We show here that mammalian cells lacking High Mobility Group Box 1 protein (HMGB1) contain a reduced amount of core, linker and variant histones, and a correspondingly reduced number of nucleosomes. Yeast nhp6 mutants lacking NHP6A and B proteins, which are related to HMGB1, also have a reduced amount of histones and fewer nucleosomes. Nucleosome limitation in both mammalian and yeast cells increases the sensitivity of DNA to damage, increases transcription globally, and the relative expression of about 10% of genes. In yeast nhp6 cells the loss of more than one nucleosome in four does not affect the location of nucleosomes and their spacing, but nucleosomal occupancy. The decrease in nucleosomal occupancy is non-uniform, and our results can be modelled assuming that different nucleosomal sites compete for the available histones: sites with high affinity are almost always packaged into nucleosomes both in wt and nucleosome-depleted cells, whereas sites with low affinity are less frequently packaged in nucleosome-depleted cells. We suggest that by modulating the occupancy of nucleosomes histone availability may constitute a novel layer of epigenetic regulation.
Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output.
No sample metadata fields
View SamplesTh17 cells were sorted ex vivo from PB of healthy donors as CD4+CD161+CCR6+CXCR3-. Following, cells were transduced with a lentiviral vector carrying the Eomes gene or with an empty vector. Infected cells were then enriched by MACS separation using the reporter gene NGFR as selection marker. Finally, cells were frozen for RNA analysis.
Eomes controls the development of Th17-derived (non-classic) Th1 cells during chronic inflammation.
Cell line
View SamplesWe exploited microarrays to detail the global program of gene expression underlying normal stem cells and cancer stem cells in the cerebellum and in medulloblastomas (MBs).
Gene signatures associated with mouse postnatal hindbrain neural stem cells and medulloblastoma cancer stem cells identify novel molecular mediators and predict human medulloblastoma molecular classification.
Specimen part
View SamplesGene expression study of DSG2 silenced human microvascular endothelial cells
Desmoglein-2-integrin Beta-8 interaction regulates actin assembly in endothelial cells: deregulation in systemic sclerosis.
Specimen part
View SamplesIn this study we applied differential gene expression analysis to exfoliated human urothelia obtained from patients of known bladder disease status. Selected targets from the microarray data were validated in an independent set of samples using a quantitative PCR approach.
A candidate molecular biomarker panel for the detection of bladder cancer.
Specimen part, Disease
View SamplesComprehensive analysis of gene expression in hematopoietic stem and progenitor cells from young and old mice.
Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle.
Sex, Age, Specimen part, Time
View SamplesMutants in the Drosophila gene lethal (3) malignant brain tumor cause malignant growth in the larval brain. This data shows the changes in gene expression profile associated to mutations in l(3)mbt, both in situ in third instar larval brains and in tumors cultured for 1 5 and 10 (T1, T5, T10) rounds of allograft culture
Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila.
No sample metadata fields
View SamplesTranscriptomic analysis of ICM and TE from in vivo-derived equine blastocysts using Illumina sequencing technology Overall design: RNA was extracted from individual equine blastocyst ICM and TE (Arcturus Picopure), cDNA was synthesized and amplified (Nugen Ovation V2) and indexed libraries were created for sequencing (TruSeq DNA V1)
RNA-seq transcriptome profiling of equine inner cell mass and trophectoderm.
Specimen part, Subject
View Samples