Primary liver tumours include hepatocellular carcinomas (HCC), cholangiocarcinomas (CC) and a group of rare tumours exhibiting biliary and hepatocytic differentiation called combined hepatocholangiocarcinomas (cHCC-CC). To better define this latter group, we take advantage of a series of these tumours based on their morphological characteristics and we performed transcriptional analysis allowing thereafter global comparison with published data. We show that most cHCC-CCs express progenitor cell traits, are committed to biliary lineage and are mainly associated to the activation of Wnt/beta-catenin and TGFbeta signalling pathways. Wnt/beta-catenin pathway activation in cHCC-CC is evidenced by the expression of both its direct targets such as LEF1 and EPCAM. In addition, extracellular matrix (ECM) genes and ECM-remodelling genes which are upon the control of TGF profibrotic program were found up-regulated in cHCC-CC. Interestingly, we show that CC and most cHCC-CC share characteristics associated to a subtype of poorly differentiated HCC suggesting that these tumours could originate from a stem/progenitor cell. The plasticity of these cells may explain the phenotypical heterogeneity of these tumors with the maintenance of some hepatocellular differentiation features such as albumin expression. Interestingly, this is shared by at least one third of CC, raising the hypothesis of a potential continuum between CC, cHCC-CC and poorly differentiated HCC.
Combined hepatocellular-cholangiocarcinomas exhibit progenitor features and activation of Wnt and TGFβ signaling pathways.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Combination of Gene Expression Signature and Model for End-Stage Liver Disease Score Predicts Survival of Patients With Severe Alcoholic Hepatitis.
Specimen part, Disease
View SamplesCorticosteroids are the current standard of care to improve short-term mortality in severe alcoholic hepatitis (AH), although nearly 40% of the patients do not respond and accurate pre-treatment predictors are lacking. We developed 123-gene prognostic score based on molecular and clinical variables before initiation of corticosteroids. Furthermore, The gene signature was implemented in an FDA-approved platform (NanoString), and verified for technical validity and prognostic capability. Here we demonstrated that a Nanostring-based gene expressoin risk classification is useful to predict mortality in patients with severe alcoholic hepatitis who were treated by corticosteroid
Combination of Gene Expression Signature and Model for End-Stage Liver Disease Score Predicts Survival of Patients With Severe Alcoholic Hepatitis.
Specimen part, Disease
View SamplesCorticosteroids are the current standard of care to improve short-term mortality in severe alcoholic hepatitis (AH), although nearly 40% of the patients do not respond and accurate pre-treatment predictors are lacking. We developed 123-gene prognostic score based on molecular and clinical variables before initiation of corticosteroids. Furthermore, The gene signature was implemented in an FDA-approved platform (NanoString), and verified for technical validity and prognostic capability. Here we demonstrated that a Nanostring-based gene expressoin risk classificatoin is useful to predict mortality in patients with severe alcoholic hepatitis who were treated by corticosteroid
Combination of Gene Expression Signature and Model for End-Stage Liver Disease Score Predicts Survival of Patients With Severe Alcoholic Hepatitis.
No sample metadata fields
View SamplesCorticosteroids are the current standard of care to improve short_term mortality in severe alcoholic hepatitis (AH), although nearly 40% of the patients do not respond and accurate pre_treatment predictors are lacking. We developed 123_gene prognostic score based on molecular and clinical variables before initiation of corticosteroids. Furthermore, The gene signature was implemented in an FDA_approved platform (NanoString), and verified for technical validity and prognostic capability. Here we demonstrated that a Nanostring_based gene expressoin risk classificatoin is useful to predict mortality in patients with severe alcoholic hepatitis who were treated by corticosteroid
Combination of Gene Expression Signature and Model for End-Stage Liver Disease Score Predicts Survival of Patients With Severe Alcoholic Hepatitis.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Scl binds to primed enhancers in mesoderm to regulate hematopoietic and cardiac fate divergence.
Specimen part, Cell line, Treatment
View SamplesScl/Tal1 confers hemogenic competence and prevents cardiomyogenesis in embryonic endothelium. Here we show that Scl both directly activates a broad gene regulatory network required for hematopoietic stem/progenitor cell (HS/PC) development, and represses transcriptional regulators required for cardiogenesis. Cardiac repression occurs during a short developmental window through Scl binding to distant cardiac enhancers that harbor H3K4me1 at this stage. Scl binding to hematopoietic regulators extends throughout HS/PC and erythroid development and spreads from distant enhancers to promoters. Surprisingly, Scl complex partners Gata 1 and 2 are dispensable for hematopoietic versus cardiac specification and Scl binding to the majority of its target genes. Nevertheless, Gata factors co-operate with Scl to activate selected transcription factors to facilitate HS/PC emergence from hemogenic endothelium. These results uncover a dual function for Scl in dictating hematopoietic versus cardiac fate choice and suggest a mechanism by which lineage-specific bHLH factors direct the divergence of competing fates.
Scl binds to primed enhancers in mesoderm to regulate hematopoietic and cardiac fate divergence.
Specimen part, Cell line
View SamplesScl/Tal1 confers hemogenic competence and prevents cardiomyogenesis in embryonic endothelium. Here we show that Scl both directly activates a broad gene regulatory network required for hematopoietic stem/progenitor cell (HS/PC) development, and represses transcriptional regulators required for cardiogenesis. Cardiac repression occurs during a short developmental window through Scl binding to distant cardiac enhancers that harbor H3K4me1 at this stage. Scl binding to hematopoietic regulators extends throughout HS/PC and erythroid development and spreads from distant enhancers to promoters. Surprisingly, Scl complex partners Gata 1 and 2 are dispensable for hematopoietic versus cardiac specification and Scl binding to the majority of its target genes. Nevertheless, Gata factors co-operate with Scl to activate selected transcription factors to facilitate HS/PC emergence from hemogenic endothelium. These results uncover a dual function for Scl in dictating hematopoietic versus cardiac fate choice and suggest a mechanism by which lineage-specific bHLH factors direct the divergence of competing fates. Overall design: Examination of Scl and Gata 1 & 2 target genes in ES cell derived day4.75 EB (embryoid body) Tie2+CD31+CD41- endothelial cells
Scl binds to primed enhancers in mesoderm to regulate hematopoietic and cardiac fate divergence.
Specimen part, Treatment, Subject
View SamplesFemale human ESC-lines can carry active X-chromosomes (Xa) or an XIST-RNA-coated inactive X-chromosome (XiXIST+). Additionally, many ESC lines have abnormal X-chromosomeinactivation (XCI)-states where the Xi no longer expresses XIST-RNA and has transcriptionally active regions (eroded Xi=Xe). The fate of each XCI-state upon differentiation is unclear because individual lines often contain a mixture of XCI-states. Here, we established homogeneous XiXa, XeXa, and XaXa ESC-lines. Employing RNA-FISH, RNA-sequencing and DNA methylation analyses, we found that these lines were unable to initiate XIST-expression and X-chromosome-wide silencing upon differentiation indicating that the ESC XCI-state is maintained in differentiated cells. Consequently, differentiated XeXa and XaXa cells displayed higher levels of X-linked gene-expression than XiXa cells. Although global transcriptional compensation between X-chromosomes and autosomes is not required for female ESC-differentiation, the degree of X-chromosome-silencing influences differentiation efficiencies. Our data suggest that the XiXIST+Xa state is inherent to human ESCs and that all other XCI-states, including XaXa, are abnormal and arise during ESC-derivation or maintenance. Overall design: RNA-seq was used to measure the expression state of X-linked and autosomal genes in undifferentiated human embryonic stem cells with different X-chromosome states and their differentiated cells.
Human Embryonic Stem Cells Do Not Change Their X Inactivation Status during Differentiation.
Specimen part, Subject
View SamplesPurpose: To analyze cardiac fibroblasts gene expression at different time following induction of osteogenic differentiation Methods: Freshly isolated cardiac fibroblasts (Passage 0 or passage 1) were plated at a density of 2.5 x 104 cells/cm2 in growth medium. After overnight incubation, osteogenesis was induced using differentiation medium (a-MEM supplemented with 10% FBS, 10 nM dexamethasone (Sigma, D4902), 20 mM ß-glycerol phosphate (Sigma, G9422), and 50 µM L-ascorbic acid (Sigma, A4403). Cardiac fibroblasts harvested at Day0 (before differentiation medium treatment), Day7, Day14 and Day21 were used for RNA sequencing. Results: Cardiac fibroblasts harvested at different time points following induction of differentiation revealed clusters of genes whose expression was significantly altered in a temporal specific manner. Genes regulating cell cycle that were highly expressed in undifferentiated cardiac fibroblasts were down-regulated at the onset of differentiation and remained at low expression levels throughout the duration of osteogenic differentiation, consistent with the principle that induction of differentiation is associated with reduced rates of proliferation. In contrast, genes that were minimally expressed in cardiac fibroblasts were induced in a specific temporal manner during the course of osteogenic differentiation and included sets of genes known to regulate inflammation, extracellular matrix proteins and cell metabolism. Conclusions: Cardiac fibroblasts subjected to osteogenic differentiation progressively adopted an osteogenic signature. Overall design: Cardiac fibroblasts harvested at Day0 (before differentiation medium treatment), Day7, Day14 and Day21 were used for RNA sequencing. 2 samples / each time point.
Cardiac Fibroblasts Adopt Osteogenic Fates and Can Be Targeted to Attenuate Pathological Heart Calcification.
Age, Specimen part, Cell line, Treatment, Subject, Time
View Samples